

UPDATED IMPACT ASSESSMENT IN RESPONSE TO WNC COMMENTS

NORTHAMPTON GATEWAY SRFI
DCO AMENDMENT TO INCREASE MEZZANINE FLOOR SPACE

DOCUMENT CONTROL

project number: ADC3519			report reference: ADC3519-RP-D		
version	date	author	reviewer	comments	
1	30/06/2025			internal draft	
2	02/07/2025			issued to WNC	

CONTENTS

1.0	INTROD	UCTION	. 4
2.0	COMPAR	RISON OF TRIP RATES	. 5
3.0	TRIP GE	NERATION SCENARIOS	10
	Vehicle t	rip generation	10
	Person t	rip generation	11
4.0	ASSESSI	MENT OF IMPACTS	13
	Backgro	und traffic flows	13
	Develop	ment traffic flows	13
	Total tra	ffic flows	13
	A508 site	e access roundabout	13
	M1 Junc	tion 15	14
5.0	SUMMAI	RY AND CONCLUSIONS	17
DIAGI	RAMS		
Diagra	am 1	2031 reference case traffic flows with NGW SRFI – AM peak hour	
Diagra		2031 reference case traffic flows with NGW SRFI – PM peak hour	
Diagra		SRFI development traffic distribution – AM peak hour	
Diagra		SRFI development traffic distribution – PM peak hour	
Diagra		Additional mezzanine floor space development traffic – scenario (a) - AM peak hour	
Diagra	am 6	Additional mezzanine floor space development traffic – scenario (a) - PM peak hour	
Diagra	am 7	Additional mezzanine floor space development traffic – scenario (b) - AM peak ho	ur
Diagra		Additional mezzanine floor space development traffic – scenario (b) - PM peak ho	
Diagra		Additional mezzanine floor space development traffic – scenario (c) - AM peak ho	
_	am 10	Additional mezzanine floor space development traffic – scenario (c) - PM peak ho	ur
_	am 11	2031 total traffic flows scenario (a) – AM peak hour	
_	am 12	2031 total traffic flows scenario (a) – PM peak hour	
_	am 13	2031 total traffic flows scenario (b) – AM peak hour	
_	am 14	2031 total traffic flows scenario (b) – PM peak hour	
_	am 15	2031 total traffic flows scenario (c) – AM peak hour	
Diagra	am 16	2031 total traffic flows scenario (c) – PM peak hour	
APPE	NDICES		
Appei	ndix A	Segro Logistics Park Rugby and Kettering Vehicle Trip Rate Comparison, ITP Novemb 2023	er
Apper	ndix B	2031 traffic flows data from latest version of NSTM	
Apper	ndix C	A508 site access ARCADY geometry and outputs	
	ndix D	M1 Junction 15 as-built information	
Apper	ndix E	M1 Junction 15 LINSIG outputs	

1.0 INTRODUCTION

- 1.1 This Technical Note presents an updated assessment of the transport impact of additional mezzanine floor space that is proposed at Northampton Gateway SRFI under the proposed amendment to the DCO.
- 1.2 It has been prepared in response to the comments received from West Northamptonshire Council (WNC). It considers a range of trip rate scenarios and provides an updated assessment of the operation of the site access junction and M1 Junction 15 using updated 2031 traffic flow forecasts provided by WNC from the latest version of their Northamptonshire Strategic Transport Model (NSTM).

2.0 COMPARISON OF TRIP RATES

- 2.1 In their comments on the TA Addendum WNC state that whilst they acknowledge that mezzanine floorspace does not generate trips on a pro-rata basis with conventional floor space, any reduction factors need to be evidenced based and fully justified.
- 2.2 The 50% factor for mezzanine floor space was agreed as part of the DCO. Therefore, as Segro are seeking an amendment to the DCO, it is ADC's view that it is appropriate to work within the agreed framework of the DCO. As was discussed during a meeting with WNC on 1 May 2025, National Highways are content with this approach. This approach was also accepted by WNC as recently as 2022, as part of the new planning application for Plot 7 at the site.
- 2.3 Nevertheless, during the 1 May 2025 meeting the more recent survey work that Sergo has undertaken at two of its large B8 warehousing and distribution sites was discussed. That work provides further information on the impact that mezzanine floor space has on vehicle trip rates. It was undertaken for Segro by ITP and is presented in their report 'Segro Logistics Park Rugby and Kettering Vehicle Trip Rate Comparison', a copy of which is provided at **Appendix A**.
- 2.4 The ITP report considers the vehicle trip rates observed at the large scale B8 warehousing and distribution units at Segro's Rugby Gateway and Kettering Gateway sites. The surveys were undertaken in 2023.
- 2.5 The report concludes "...the analysis demonstrates that mezzanine levels do not appear to have a significant impact on vehicle trip rates; and that vehicle trip rates are more likely to be influenced by other factors such as the business model operations of occupiers. At both Rugby Gateway and Kettering Gateway, vehicle trip rates are in fact higher at units which do not have mezzanines; and therefore, may indicate that units with mezzanine space have business operations which result in lower vehicle trip rates than units which do not have mezzanine space."
- 2.6 Table 4.6 of the ITP report provides a comparison of the vehicle trip rates for units including mezzanine floor space and units with no mezzanine floor space. As shown, the units with mezzanine floor space have the lower vehicle trip rates.
- 2.7 During the 1 May 2025 meeting it was agreed to provide a comparison of the traffic generation based on the Northampton Gateway DCO trip rates vs the traffic generation based on the trip rates from the ITP report for units with mezzanine floor space.
- 2.8 The vehicle trip rates established in the DCO for the B8 warehousing and distribution uses at Northampton Gateway are provided below.

DCO vehicle trip rates

Two-way vehicle trip rates							
	Lights HGV Total						
AM	0.142	0.046	0.188				
PM	0.190	0.040	0.230				

2.9 Vehicle trip rates observed from the ITP study for warehousing and distribution units that include mezzanine floor space are provided below.

Observed vehicle trip rates for units with mezzanine floor space

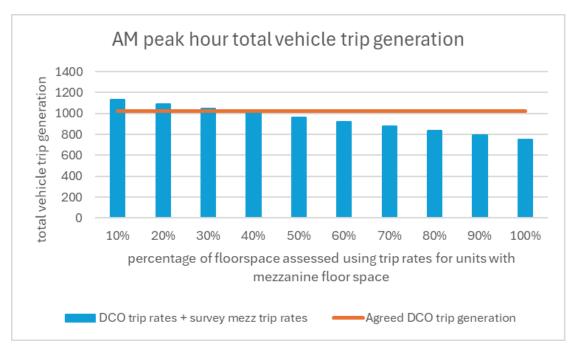
Two-way vehicle trip rates							
	Lights	HGV	Total				
AM	0.090	0.030	0.120				
PM	0.070	0.030	0.100				

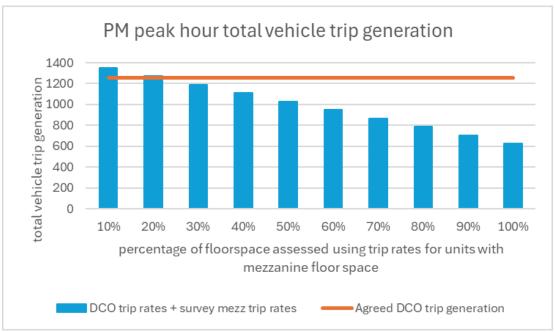
- 2.10 From the above it can be seen that the vehicle trip rates observed for units that include mezzanine floor space are significantly lower than the trip rates used in the DCO.
- 2.11 A simplistic comparison of the vehicle trip generation associated with proposed additional mezzanine floor space can be made by applying the proposed 111,480 sqm of mezzanine floor space to the above trip rates. Note that in this comparison the 50% factor is applied to the DCO trip rates. This is set out in the tables below.

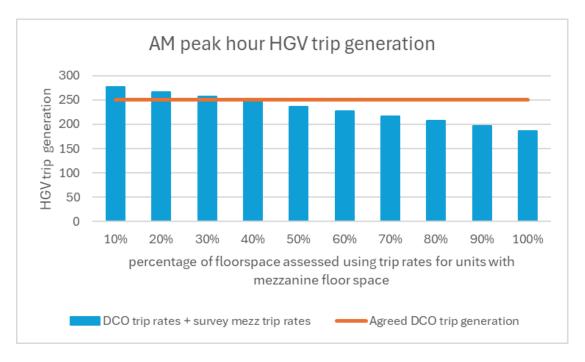
Vehicle trip generation based on DCO trip rates with 50% factor applied for mezzanine floor space

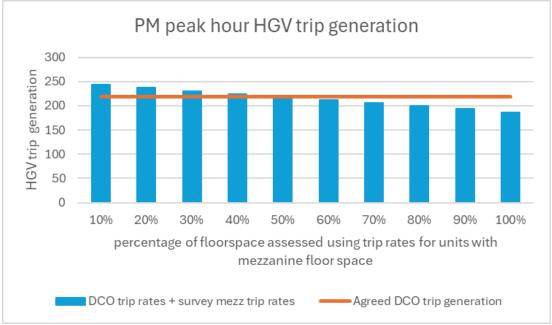
Two-way vehicle trip generation							
	Lights	HGV	Total				
AM	79	26	105				
PM	106	22	128				

Vehicle trip generation using observed vehicle trip rates for units with mezzanine floor space


Two-way vehicle trip generation							
	Lights	HGV	Total				
AM	100	33	134				
PM	78	33	111				


- 2.12 The comparison shows good correlation between the data sources, with the DCO based method resulting in 29 fewer trips in the morning peak hour, but 17 more trips in the evening peak hour.
- 2.13 However, as discussed during the Teams call on 1 May 2025, the mezzanine space would not be constructed in isolation, rather it would be provided within a unit. Hence, any comparison should apply the appropriate trip rates to the full floor area for the unit. When this is accounted for, the greater the percentage of total floor space containing mezzanine floor space at the site, the lower the overall vehicle trip generation of the site.
- 2.14 To illustrate this point, the series of charts shown overleaf plot the resulting total vehicle trip generation on the y-axis, plotted against the percentage of the total floor space containing mezzanine floor space.
- 2.15 The orange line is the vehicle trip generation for the fully consented conventional floor space of 468,00 sqm + 155,000 sqm of mezzanine floor space, based on application of the DCO trips rates for the conventional floor space with the 50% DCO trip rate factor applied to the mezzanine floor space. As shown, this method results is a constant 1,026 vehicle trips in the morning peak hour and 1,255 vehicle trips in the evening peak hour, as in this method the percentage of the total floor space containing mezzanine floor space is not a variable.
- 2.16 The blue bars are the calculated vehicle trip generation for the fully consented conventional floor space of 468,00 sqm + 155,000 sqm of mezzanine floor space, based on the application of the DCO trip rates for units without mezzanine floor space, but with the application of the observed ITP trip rates for units with mezzanine floor space. As shown, as the percentage of total floor space


containing mezzanine floor space increases, the overall vehicle trip generation for the site reduces.


2.17 Charts are provided for the total number of vehicle trips for the morning and evening peak hours, along with the corresponding number of HGV trips.

- 2.18 The charts demonstrate that the greater the total floor space containing mezzanine floor space at the site, the lower the vehicle trip generation for the site. This applies to both HGV traffic and total traffic.
- 2.19 The table below compares the resultant total traffic generations based on the methodology adopted in the DCO (i.e. 50% factor applied to vehicle trip rates for mezzanine floor space), to the resultant traffic generation if the consented scheme is assessed using the surveyed ITP trip rates for units containing mezzanine floor space. As shown, there is a difference of only 4 vehicle trips in the morning peak hour and, in the evening peak hour, the DCO methodology results in 92 more vehicle trips than would be the case if the surveyed ITP data was applied.

Comparison of total vehicle trip generations in the DCO vs surveyed trip rates for units containing mezzanine floor space (based on consented scheme with 155,000 sqm mezzanine floor space

		· · · · · · · · · · · · · · · · · · ·	
	DCO methodology	Surveyed trip rates for units containing	
	50% factor applied to trip rates for	mezzanine floor space	
	mezzanine floor space	(ITP trip rates)	
AM peak hour	1,026	1,030	
PM peak hour	1,255	1,163	

- 2.20 This comparison gives a high degree of confidence that the 50% factor applied in the DCO to assess mezzanine floor space provides a robust assessment of the traffic generations.
- 2.21 Nevertheless, for the purposes of this assessment, and as set out in the following section of this report, a range of trip rate scenarios have been tested.

3.0 TRIP GENERATION SCENARIOS

Vehicle trip generation

- 3.1 For the purposes of addressing WNC's comments the following trip rates/generation scenarios have been considered:
 - Trip generation in accordance with the DCO trip rates as per the table at paragraph 2.8 of Technical Note (i.e. 50% factor applied for mezzanine floor space)
 - Trip generation based on observed survey data for warehousing units with mezzanine floor space as per the table at paragraph 2.9 of this Technical Note (ITP trip rates)
 - A sensitivity test, in which the DCO trip rates as per the table at paragraph 2.9 of this Technical Note are applied at 100%.
- 3.2 Application of the above trip rate scenarios to the proposed additional mezzanine floor space of 111,480 sqm gives the following vehicle trip generations.

Scenario (a): DCO trip rates @50%

		traffic generation based on DCO B8 vehicle trip rates and 50% mezzanine factor							
		(not accounting for Travel Plan and excluding reductions due to rail interaction)							
	light vehicles			heavy vehicles			total vehicles		
	arrive	depart	two-way	arrive	depart	two-way	arrive	depart	two-way
AM	71	8	79	13	12	26	85	20	105
PM	23	82	105	12	11	22	35	93	128

Scenario (b): ITP trip rates

	· · · · · · · · · · · · · · · · · · ·								
		traffic generation based on ITP vehicle trip rates							
		(not accounting for Travel Plan and excluding reductions due to rail interaction)							
	light vehicles			heavy vehicles			total vehicles		
	arrive	depart	two-way	arrive	depart	two-way	arrive	depart	two-way
AM	90	10	100	17	16	33	108	26	134
PM	17	60	78	18	16	33	35	76	111

Scenario (c): DCO trip rates @ 100% (sensitivity test)

	sensitivi	sensitivity test (traffic generation based on DCO B8 vehicle trip rates and 100% mezzanine factor)							
		(not accounting for Travel Plan and excluding reductions due to rail interaction)							
	light vehicles			heavy vehicles			total vehicles		
	arrive	depart	two-way	arrive	depart	two-way	arrive	depart	two-way
AM	143	16	158	27	25	51	169	40	210
PM	47	164	212	23	21	45	70	185	256

- 3.3 It should be noted that in scenario (b) (ITP trip rates) the trip generation has been applied directly to the additional mezzanine floor space, which is then added to the consented traffic generation for the site. It does not therefore account for the overall reduction in traffic that would result if the ITP trip rates were applied to the entirety of a units floor space. The assessment is therefore robust for the reason explained at paragraph 2.13.
- 3.4 Scenario (c) is provided as a sensitivity test only. It is not considered a realistic assessment, but it is included to demonstrate that the overall conclusions of the assessment work are not particularly sensitivity to the assumptions made around trip rates/traffic generation (i.e. there is sufficient capacity within the improved highway network to accommodate the extra traffic from the proposed additional mezzanine floor space).

Person trip generation

- 3.5 The TA Addendum submitted with the application for the DCO amendment included an assessment of the person trip generation associated with the additional mezzanine floor space based on scenario (a). This has been repeated below for scenario (b) and the scenario (c) sensitivity test.
- 3.6 The Public Transport Strategy, car share, and the pedestrian and cyclist strategy for the Northampton Gateway SRFI site were designed to positively influence the modal share to limit traffic generation. The approved Framework Travel Plan sets the following modal share targets for the Northampton Gateway SRFI site. The occupiers are required to develop their own detailed Travel Plan in accordance with the requirements of the Framework Travel Plan.

mode	year 1	year 5
single occupancy vehicle	92%	74%
car share	5%	12%
public transport	3%	10%
walking and cycling	0%	4%

- 3.7 The Framework Travel Plan has the following modal share targets:
 - Achieve a 20% reduction in single occupancy car journeys within 5 years
 - 12% of employees to car share within 5 years
 - 10% of employee trips to be made by bus within 5 years
 - 3% of employee trips to be made by bike and 1% by foot within 5 years.
- 3.8 Based on the above modal share targets, and the assessment of the light vehicle trips given at paragraph 3.2 (as HGV trips would not undergo a modal shift, as their primary purpose is the transportation of their cargo), the tables below summarises the forecast morning and evening peak hour, person trips that could be associated with the proposed additional mezzanine floor space at Northampton Gateway SRFI after 5 years, for the three trip generation scenarios.

AM peak hour person trips (two-way)						
mode	Scenario (a)	Scenario (b)	Scenario (c)			
car driver	64	81	127			
hgv driver	26	33	51			
car share	10	13	21			
public transport	9	11	17			
walking/cycling	3	4	7			
total	112	143	223			

PM peak hour person trips (two-way)							
mode	Scenario (a)	Scenario (b)	Scenario (c)				
car driver	85	62	169				
hgv driver	22	33	45				
car share	14	10	27				
public transport	11	8	23				
walking/cycling	5	3	9				
total	137	118	274				

- 3.9 Section 2 of the TA Addendum describes the walking and cycling strategies for Northampton Gateway SRFI that were developed in agreement with the highway authorities as part of the DCO. These provide enhanced connectivity from the SRFI site for pedestrians and cyclists to Collingtree, Northampton, and Roade. The measures are summarised as follows:
 - A comprehensive network of both on street and off-street shared footway/cycleways throughout the SRFI site with appropriate crossing points provided.
 - New footway/cycleway facilities alongside the A508, linking the site access roundabout with the Roade bypass to the south and M1 Junction 15 to the north, with signal controlled crossing facilities at the site access roundabout providing access to new bus stops.
 - A comprehensive upgrade of walking and cycling facilities at M1 Junction 15 including Toucan crossings at all crossing points.
 - New footway/cycleway between M1 Junction 15 and the junction with Watering Lane, with Toucan crossing to connect to the existing facilities to the north.
 - Public footpaths KX17 and KX13 that cross the SRFI site have been diverted and extended to form a loop within the landscape bunding.
 - A cycle track (for use by pedestrians and cyclists) connecting the development to Collingtree, and the wider Northampton area, via the existing bridge over the M1.
- 3.10 The internal and external footway/cycleway network provides significantly improved connections to the residential areas within the walking and cycling catchments and therefore, there are direct and safe walking and cycling routes to and from the SRFI. These measures would accommodate the modest increase in walking and cycling trips (3 to 5 additional trips, or up to 9 if considering the sensitivity test) associated with the additional mezzanine floor space.
- 3.11 As part of the DCO, a public transport strategy was developed which includes the introduction of a new bus service specifically serving the SRFI site, as well as building on the existing local bus network and providing additional bus stops on the A508 to the north and south of the A508/site access roundabout. The bus service improvement would accommodate the modest increase in public transport trips (8 to 11 trips, or up to 23 if considering the sensitivity test) associated with the additional mezzanine floor space.

4.0 ASSESSMENT OF IMPACTS

Background traffic flows

- 4.1 The junction assessments presented in the TA Addendum were undertaken using the 2031 morning and evening peak hour traffic flows with the SRFI and highway works in place (flow set J1d), which were extracted from the approved TA that was prepared to support the DCO. For the purposes of the TA Addendum those flows were the background traffic flows.
- 4.2 Since that time, WNC have provided updated 2031 traffic flows from the latest version of the NSTM. Those flows are provided at **Appendix B**. The updated traffic flows referred to as 2031 Reference Case include for the consented traffic associated with Northampton Gateway SRFI, but do not include for the extra traffic associated with the additional mezzanine floor space.
- 4.3 These are the updated 2031 background traffic flows, which have been extracted for the site access and M1 Junction 15 and are shown at **Diagrams 1 and 2**, respectively.

Development traffic flows

- 4.4 The development traffic associated with each of the three trip rates scenarios identified in Section 3 have been assigned to the highway network using the trip distribution extracted from the approved TA. It has been agreed via separate correspondence with WNC that this remains appropriate. The approved trip distribution is provided at **Diagrams 3 and 4** for the morning and evening peak hour period, respectively.
- 4.5 The resultant traffic from the additional mezzanine floor space is give at the following diagrams for the morning and evening peak hour periods:
 - Scenario (a): DCO trip rates @50% Diagrams 5 and 6
 - Scenario (b): ITP trip rates- Diagrams 7 and 8
 - Scenario (c): DCO trip rates @ 100% (sensitivity test) Diagrams 9 and 10.

Total traffic flows

- 4.6 These have been added to the 2031 background traffic flows given at **Diagrams 1 and 2** to give the resultant 2031 total (with development) traffic flows for the morning and evening peak hour periods, as follows:
 - Scenario (a): DCO trip rates @50% Diagrams 11 and 12
 - Scenario (b): ITP trip rates- Diagrams 13 and 14
 - Scenario (c): DCO trip rates @ 100% (sensitivity test) **Diagrams 15 and 16**.

A508 site access roundabout

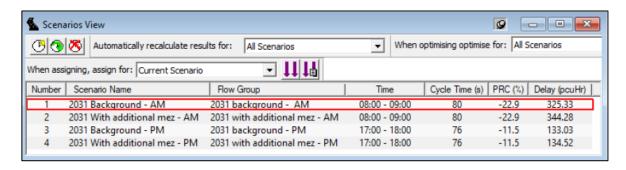
- 4.7 The TA submitted in support of the DCO application demonstrated that the A508 northbound and southbound approaches to the site access roundabout were forecast to operate at 85% and 82% of their full capacity by 2031, with the Northampton Gateway SRFI fully operational.
- 4.8 The TA Addendum concluded that since a ratio of flow to capacity of 0.85 (85%) is often considered to be the upper design capacity threshold, the increase in traffic flow due to an increase in the mezzanine floor space would cause the A508 northbound approach to operate above 85% of capacity and could also push the A508 southbound approach above 85%, and therefore mitigation would be required.

- 4.9 However, the revised traffic flows form the latest version of the NSTM are materially reduced compared to the previous traffic flow forecasts. The operation of the existing site access junction has therefore been modelled using the revised 2031 background traffic flows and each of the with development scenarios using the ARCADY module of the JUNCTIONS software. The ARACDY output, including the model geometries is provided at **Appendix C**. The assessment included for the signal crossings on the A508 north arm of the roundabout.
- 4.10 A summary of the results is provided in the table below. As shown, due to the reduction in the forecast traffic flows, there is an improvement in the operation of the roundabout in the 2031 background scenario as compared to that examined in the DCO. Further, in Scenario (a) and Scenario (b) all arms of the roundabout would continue to operate with a ratio of flow (RFC) to capacity of 0.85 or less, with minimal queuing and delay. Even in the unrealistic sensitivity test (Scenario (c)), the roundabout would continue to operate well within capacity, with only the A508 north arm nudging above 0.85 RFC, but with minimal delay and queuing.

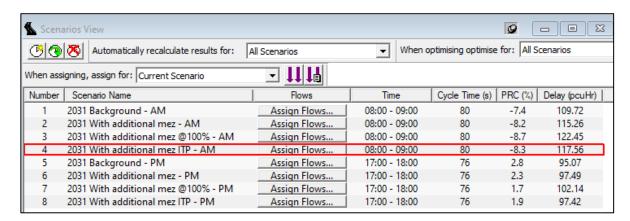
	e:	0.	AN			0.	PN	1
	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity
				2031 - Updated N	STM Backgr	ound		
Arm 1	4.3	6.61	0.80	22 %	1.6	3.36	0.59	29 %
Arm 2	1.3	5.05	0.55		2.6	6.73	0.71	
Arm 3	0.0	3.16	0.01	[Arm 1]	0.1	3.40	0.09	[Arm 2]
		125		2031 - Updated N	STM +mez @	050%		
Arm 1	5.4	7.92	0.84	17 %	1.7	3.54	0.61	27 %
Arm 2	1.5	5.53	0.58	20.4000002	2.7	7.15	0.72	400000000
Arm 3	0.0	3.19	0.01	[Arm 1]	0.1	3.44	0.10	[Arm 2]
				2031 - Updated	NSTM +mez	ITP		
Arm 1	5.8	8.39	0.85	16 %	1.8	3.55	0.61	26 %
Arm 2	1.5	5.68	0.59	25.7227.5	2.8	7.21	0.73	7-15-16-75
Arm 3	0.0	3.20	0.01	[Arm 1]	0.1	3.43	0.09	[Arm 2]
				2031 - Updated NS	TM sensitivi	ty test		
Arm 1	6.9	9.88	0.87	12 %	1.9	3.73	0.63	24 %
Arm 2	1.6	6.10	0.61		2.9	7.61	0.74	
Arm 3	0.0	3.19	0.01	[Arm 1]	0.1	3.48	0.11	[Arm 2]

Arm 1= A508 north, Arm 2 = A508 south, Arm 3 = SRFI site access

4.11 It is concluded that the traffic associated with the proposed amendment to the DCO to increase the mezzanine floor space would be satisfactory accommodated at the existing site access junction. The scheme of minor highway works that were previously proposed as part of the DCO amendment is not therefore required.


M1 Junction 15

- 4.12 The highway improvement scheme at M1 Junction 15 was shown to provide a significantly better than nil detriment improvement with the 2031 background traffic plus SRFI traffic (J1d traffic flows) used in the DCO than when compared to the previous arrangement of the junction, without the SRFI traffic. The detailed junction modelling included in the TA submitted with the DCO showed that the total delay at the junction would reduce by more than 50% in both peak hours, with capacity improvements on all approaches to the junction.
- 4.13 However, despite the very significant improvements provided, in the 2031 assessment year considered in the DCO, the improved junction was still forecast to operate with a negative PRC, as show in the summary below that has been extracted from the DCO TA.



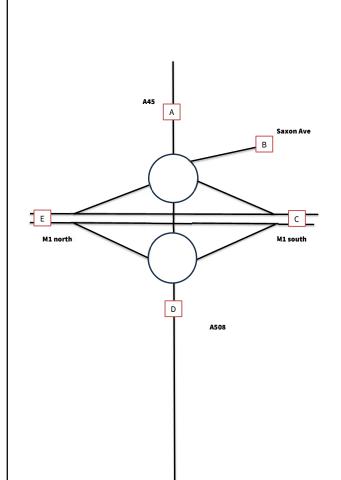
Summary of M1 J15 performance (extracted from the DCO TA)							
Scenario	Peak	PRC (%)	Delay (pcuHr)				
2031 existing junction without SRFI	AM	-100.1	871.69				
development	PM	-54.7	556.63				
2031 with SRFI and highway improvement	AM	-23.1	398.17				
works	PM	-9.9	186.26				

- 4.14 The controller configuration for the as-built junction improvement scheme was provided by National Highways so that the approved LinSig model could be updated to reflect the changes made to the scheme during the detailed design and implementation phases. As a result, the phase and stage arrangement and the intergreen matrices have been updated to match the controller function on-street. The as-built junction information is provided at **Appendix D**. In their review of the TA Addendum, National Highways agreed that the changes made to the model were appropriate and that the model was fit for purpose.
- 4.15 As part of the TA Addendum the operation of M1 Junction 15 was assessed using the original updated LinSig model and the 2031 traffic flow data. A summary of that assessment is presented in the table below. National Highway have accepted this level of operation and have no objection to the proposed amendment to the DCO to increase the mezzanine floor space on that basis.

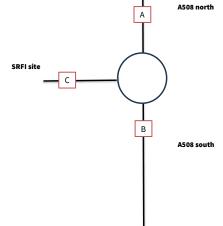
4.16 Following receipt of the revised traffic data from WNC, the operation of the junction has been assessed using the updated LinSIG model and using the revised 2031 background traffic flows and each of the 'with development' scenarios. The LinSig report is provided at **Appendix E** and a summary of the results is provided at the table below.

4.17 For the 2031 background scenario, the results show that due to the reduction in the 2031 flows across the network, the junction operates significantly better when compared to the assessment presented in the both the TA and TA Addendum. The results summarised above show that in the morning peak hour, although the junction if still forecast to have a negative PRC, it would operate

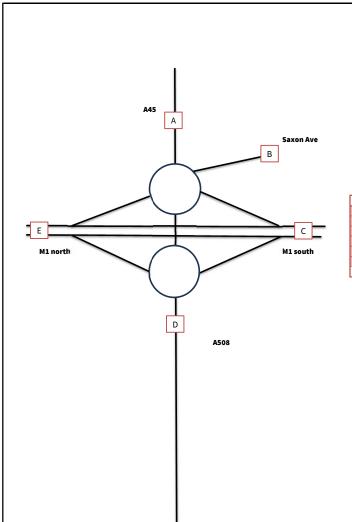
- within 100% of capacity in all scenarios. In the evening peak hour, the junction is forecast to operate with a positive PRC in all scenarios.
- 4.18 The results show whilst there would be small increases in delay and queueing across the model associated with the additional mezzanine floor space, these could not be categorised as severe. The junction would continue to operate significantly better than without the SRFI traffic and associated highway improvements, with much improved performance as compared to that previously accepted.
- 4.19 It is concluded that the traffic associated with the proposed amendment to the DCO to increase the mezzanine floor space would be satisfactory accommodated at M1 Junction 15.



5.0 SUMMARY AND CONCLUSIONS

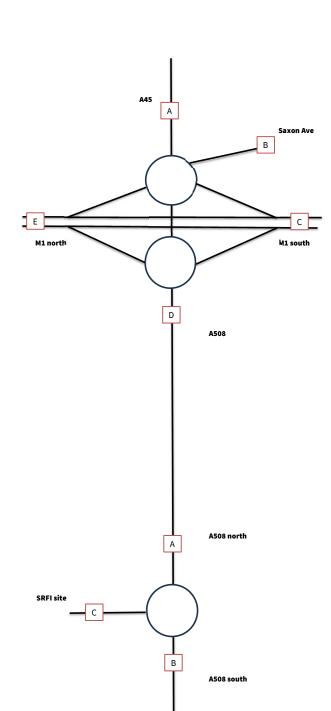

- 5.1 This Technical Note presents an updated assessment of the transport impact of additional mezzanine floor space that is proposed at Northampton Gateway SRFI under the proposed amendment to the DCO.
- 5.2 It has been prepared in response to the comments received from West Northamptonshire Council (WNC) on the TA Addendum. It considers a range of trip rate scenarios and provides an updated assessment of the operation of the site access junction and M1 Junction 15 using updated 2031 traffic flow forecasts provided by WNC from the latest version of their Northamptonshire Strategic Transport Model (NSTM).
- 5.3 WNC provided the traffic flow information from the latest version of the NSTM. This highlighted that the latest version of the NSTM forecasts substantial reductions in the future year (2031) background traffic flows near to the site on the A508 and at M1 Junction 15.
- 5.4 Segro have recently completed the significant infrastructure upgrades to the A508 and M1 Junction 15 (and M1 Junction 15a) that were demonstrated via the DCO to accommodate much greater traffic flows than are now forecast. It therefore follows that the completed highway improvements will provide significantly more headroom on the highway network to accommodate additional traffic than was assessed in the TA Addendum.
- 5.5 This Technical Note has assessed the impact of this new traffic flow information on the proposed DCO amendment, and specifically whether there would remain the requirement for the proposed minor improvement works at the site access junction.
- 5.6 The assessment demonstrates that with the materially lower traffic flows that are now forecast, the existing site access junction would operate satisfactorily including for the additional traffic associated with the proposed increase in mezzanine floor space for a range of traffic generation scenarios. Hence there is no requirement for the minor improvement works that were proposed in the DCO amendment. Segro therefore intend to amend the DCO amendment to exclude the minor improvement works at the site access.
- 5.7 The impact of the additional trips on transport infrastructure has been assessed. It is concluded that the transport impacts arising of the increased mezzanine floor space would continue to be mitigated by the infrastructure improvements consented and delivered as part of the DCO, with residual impacts reduced to acceptable levels. Accordingly, there should be no objection to the proposed amendment to the DCO.

		DIAGRAMS


PCUs									
	Α	В	С	D	E	Total			
Α	44	28	644	1735	1274	3725			
В	26	0	39	24	104	193			
С	1093	37	0	40	0	1170			
D	758	24	64	17	295	1158			
E	1874	173	0	379	0	2426			
Total	3795	262	747	2195	1673	8672			
Total	3795	262	747	2195	1673	8672			

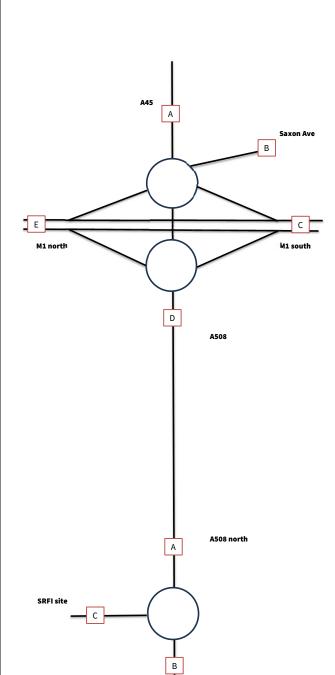
PCUs									
	A B C Total								
Α	0	1323	861	2183					
В	798	0	66	865					
С	367	7	0	374					
Total	1165	1330	927	3422					

Diagram 1: 2031 reference case traffic flows with NGW SRFI in place - AM peak hour (from lastest version of NSTM)


PCUs									
	Α	В	С	D	E	Total			
Α	24	302	843	1097	1129	3395			
В	0	0	94	53	143	290			
С	1196	27	0	74	0	1297			
D	1473	5	23	1	721	2223			
E	1258	83	0	406	0	1747			
Total	3951	417	960	1631	1993	8952			

A508 north

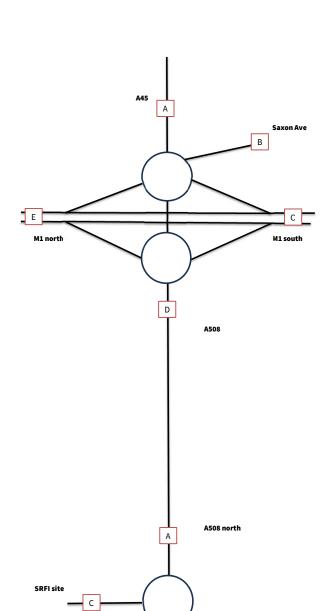
PCUs								
	Α	В	С	Total				
Α	0	1125	449	1574				
В	1201	0	61	1262				
С	1029	72	0	1101				
Total	2229	1197	510	3937				


	Light Vehicles								
	Α	В	С	D	E	Total			
Α				38%		38%			
В				0%		0%			
С				26%		26%			
D	51%	0%	14%	0%	17%	82%			
E				21%		21%			
Total	51%	0%	14%	85%	17%				

	HGVs								
	Α	В	С	D	Е	Total			
Α				36%		36%			
В				0%		0%			
С				29%		29%			
D	40%	0%	32%	0%	29%	100%			
E				26%		26%			
Total	40%	0%	32%	91%	29%				

Light Vehicles								
A B C Total								
Α			85%	85%				
В			15%	15%				
С	81%	19%		100%				
Total	81%	19%	100%					

HGVs									
	Α	В	С	Total					
Α			91%	91%					
В			9%	9%					
С	100%	0%		100%					
Total	100%	0%	100%						


	Light Vehicles								
	A B C D E								
Α				44%		44%			
В				0%		0%			
С				11%		11%			
D	51%	0%	19%	0%	16%	86%			
E				28%		28%			
Total	51%	0%	19%	82%	16%				

	HGVs								
	Α	В	С	D	E	Total			
Α				36%		36%			
В				0%		0%			
С				29%		29%			
D	40%	0%	32%	0%	29%	100%			
E				26%		26%			
Total	40%	0%	32%	91%	29%				

Light Vehicles									
A B C Total									
Α			82%	82%					
В			18%	18%					
C 86% 14%									
Total	86%	14%	100%						

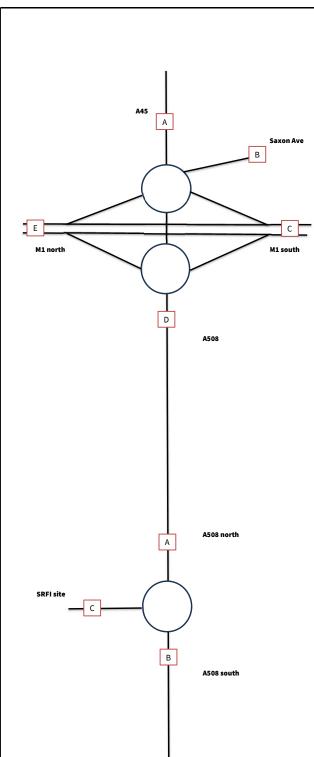
HGVs									
	Α	В	С	Total					
Α			91%	91%					
В			9%	9%					
С	100%	0%		100%					
Total	100%	0%	100%						

Light Vehicles									
	A B C D E To								
Α				27		27			
В				0		0			
С				19		19			
D	4	0	1	0	1	6			
Е				15		15			
Total	4	0	1	61	1	67			

	HGVs								
	Α	В	С	D	E	Total			
Α				5		5			
В				0		0			
С				4		4			
D	5	0	4	0	4	12			
E				3		3			
Total	5	0	4	12	4	24			

	Total Vehicles								
	A B C D E Tot								
Α				32		32			
В				0		0			
С				22		22			
D	9	0	5	0	5	19			
E				18		18			
Total	9	0	5	73	5	91			

	PCUs								
	Α	В	С	D	E	Total			
Α				38		38			
В				0		0			
С				27		27			
D	15	0	10	0	9	35			
E				23		23			
Total	15	0	10	89	9	123			



	HGVs								
	A B C Total								
Α			12	12					
В			1	1					
С	12	0		12					
Total	12	0	13	26					

Total Vehicles									
	A B C Total								
Α			73	73					
В			12	12					
С	19	1		20					
Total	19	1	85	105					

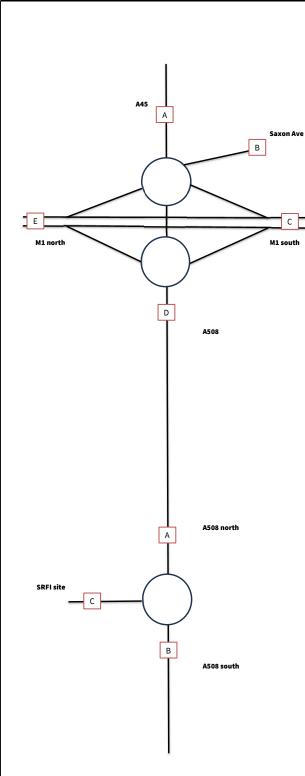
	PCUs								
A B C Tota									
Α			89	89					
В			13	13					
С	35	1		36					
Total	35	1	102	138					

Light Vehicles								
	A B C D E Tot							
Α				10		10		
В				0		0		
С				3		3		
D	42	0	16	0	13	70		
E				7		7		
Total	42	0	16	20	13	90		

	HGVs								
	Α	В	С	D	E	Total			
Α				4		4			
В				0		0			
С				3		3			
D	4	0	3	0	3	11			
Е				3		3			
Total	4	0	3	11	3	21			

	Total Vehicles							
	A B C D E Tota							
Α				14		14		
В				0		0		
С				6		6		
D	46	0	19	0	16	81		
E				10		10		
Total	46	0	19	30	16	111		

PCUs								
	Α	В	С	D	E	Total		
Α				20		20		
В				0		0		
С				10		10		
D	51	0	23	0	20	95		
E				14		14		
Total	51	0	23	44	20	139		


Light Vehicles								
	A B C Total							
Α			19	19				
В			4	4				
С	C 70 11 82							
Total	70	11	23	105				

HGVs									
	Α	В	С	Total					
Α			11	11					
В			1	1					
С	11	0		11					
Total	11	0	12	22					

Total Vehicles									
	A B C Total								
Α			30	30					
В			5	5					
С	81	11		93					
Total	81	11	35	128					

PCUs									
	A B C Tota								
Α			44	44					
В			7	7					
С	95	11		106					
Total	95	11	50	157					

Light Vehicles								
	A B C D E To							
Α				34		34		
В				0		0		
С				24		24		
D	5	0	1	0	2	8		
E				19		19		
Total	5	0	1	77	2	85		

	HGVs								
	Α	В	С	D	E	Total			
Α				6		6			
В				0		0			
С				5		5			
D	6	0	5	0	5	16			
E				5		5			
Total	6	0	5	16	5	32			

	Total Vehicles								
	A B C D E Tota								
Α				41		41			
В				0		0			
С				29		29			
D	11	0	6	0	6	24			
E				24		24			
Total	11	0	6	93	6	117			

PCUs								
	Α	В	С	D	E	Total		
Α				49		49		
В				0		0		
С				35		35		
D	20	0	13	0	12	45		
E				29		29		
Total	20	0	13	113	12	158		


Light Vehicles								
	A B C Total							
Α			77	77				
В			14	14				
С	C 8 2 10							
Total	8	2	90	100				

HGVs							
	Α	В	С	Total			
Α			16	16			
В			2	2			
С	16	0		16			
Total	16	0	17	33			

Total Vehicles									
	Α	A B C Total							
Α			93	93					
В			15	15					
С	24	2		26					
Total	24	2	108	134					

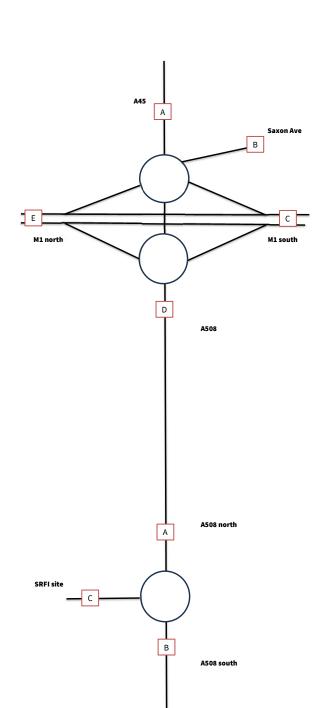
PCUs								
	Α	В	С	Total				
Α			113	113				
В			17	17				
С	45	2		47				
Total	45	2	131	177				

Light Vehicles								
	Α	В	С	D	E	Total		
Α				8		8		
В				0		0		
С				2		2		
D	31	0	11	0	10	52		
E				5		5		
Total	31	0	11	14	10	66		

	HGVs							
	Α	В	С	D	E	Total		
Α				6		6		
В				0		0		
С				5		5		
D	6	0	5	0	5	16		
E				5		5		
Total	6	0	5	16	5	32		

Total Vehicles								
	Α	В	С	D	E	Total		
Α				14		14		
В				0		0		
С				7		7		
D	37	0	17	0	14	68		
E				10		10		
Total	37	0	17	30	14	98		

	PCUs								
	Α	В	С	D	E	Total			
Α				22		22			
В				0		0			
С				14		14			
D	45	0	23	0	20	88			
E				15		15			
Total	45	0	23	51	20	140			


Light Vehicles							
	A B C Total						
Α			14	14			
В			3	3			
С	52	8		60			
Total	52	8	17	77			

HGVs							
	Α	В	С	Total			
Α			16	16			
В			2	2			
С	16	0		16			
Total	16	0	18	33			

Total Vehicles									
	Α	A B C Total							
Α			30	30					
В			5	5					
С	68	8		76					
Total	68	8	35	110					

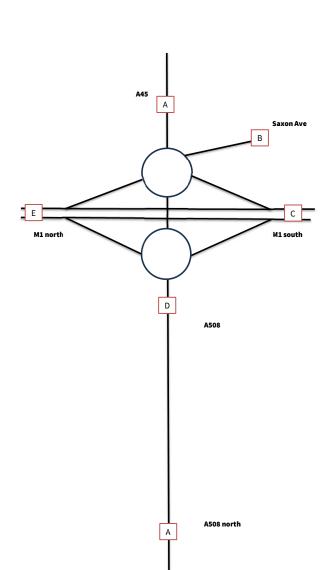
	PCUs									
	Α	В	С	Total						
Α			51	51						
В			7	7						
С	89	8		97						
Total	80	Ω	57	154						

Light Vehicles								
	Α	A B C D E Total						
Α				54		54		
В				0		0		
С				37		37		
D	8	0	2	0	3	13		
E				30		30		
Total	8	0	2	121	3	134		

	HGVs							
	Α	В	С	D	E	Total		
Α				10		10		
В				0		0		
С				8		8		
D	10	0	8	0	7	25		
E				7		7		
Total	10	0	8	24	7	49		

	Total Vehicles							
	A B C D E Total							
Α				64		64		
В				0		0		
С				45		45		
D	18	0	10	0	10	37		
E				37		37		
Total	18	0	10	146	10	183		

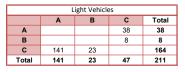
PCUs								
	A B C D E Tot							
Α				76		76		
В				0		0		
С				55		55		
D	30	0	20	0	19	69		
E				46		46		
Total	30	0	20	177	19	246		


Light Vehicles								
A B C Total								
Α			121	121				
В			21	21				
C 13 3 16								
Total	13	3	143	158				

HGVs								
	A B C Total							
Α			24	24				
В			2	2				
С	25	0		25				
Total	25	0	27	51				

Total Vehicles									
	A B C Total								
Α			146	146					
В			24	24					
С	37	3		40					
Total	37	3	169	210					

PCUs									
	Α	В	С	Total					
Α			177	177					
В			27	27					
С	69	3		72					
Total	69	3	204	276					



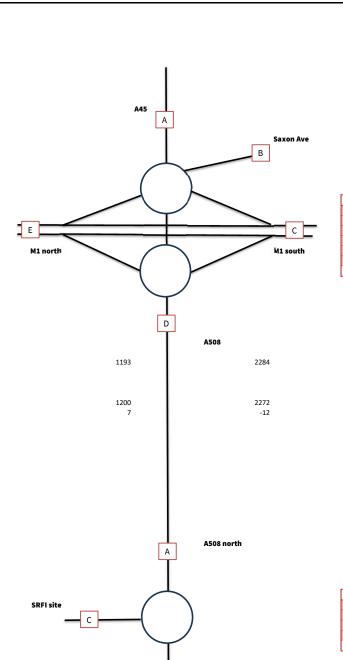
Light Vehicles								
	A B C D E Total							
Α				20		20		
В				0		0		
С				5		5		
D	84	0	31	0	26	141		
E				13		13		
Total	84	0	31	39	26	179		

	HGVs								
	Α	В	С	D	E	Total			
Α				8		8			
В				0		0			
С				7		7			
D	8	0	7	0	6	21			
E				6		6			
Total	8	0	7	21	6	42			

	Total Vehicles							
	A B C D E Total							
Α				29		29		
В				0		0		
С				12		12		
D	92	0	38	0	32	162		
E				19		19		
Total	92	0	38	60	32	222		

	PCUs								
	Α	В	С	D	E	Total			
Α				40		40			
В				0		0			
С				21		21			
D	103	0	47	0	40	190			
E				27		27			
Total	103	0	47	88	40	277			

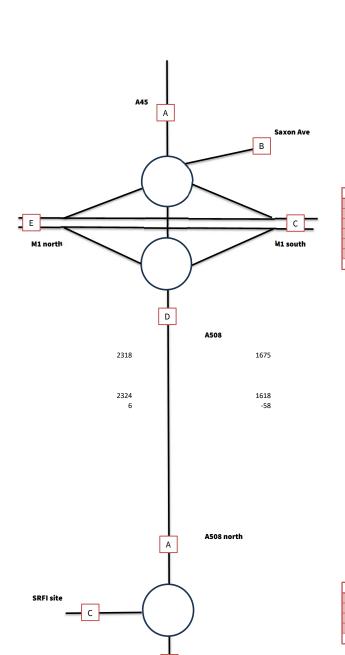
HGVs								
	A B C Total							
Α			21	21				
В			2	2				
С	21	0		21				
Total	21	0	23	45				


Total Vehicles							
	A B C Total						
Α			60	60			
В			11	11			
С	162	23		185			
Total	162	23	70	255			

PCUs							
	Α	В	С	Total			
Α			87	87			
В			13	13			
С	190	23		213			
Total	100	23	101	313			

SRFI site

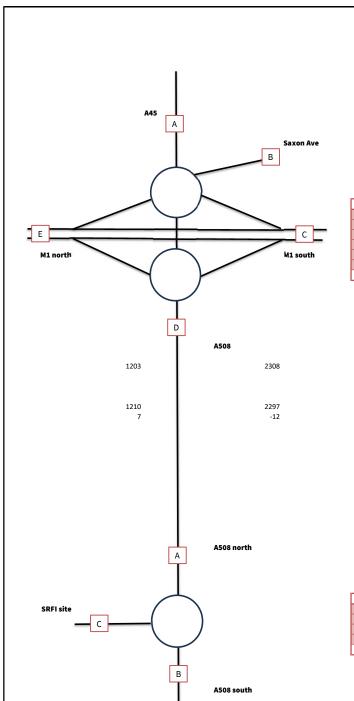
- C



В

PCUs							
	Α	В	С	D	E	Total	
Α	44	28	644	1773	1274	3763	
В	26	0	39	24	104	193	
С	1093	37	0	67	0	1197	
D	773	24	74	17	304	1193	
Е	1874	173	0	402	0	2449	
Total	3810	262	757	2284	1682	8795	

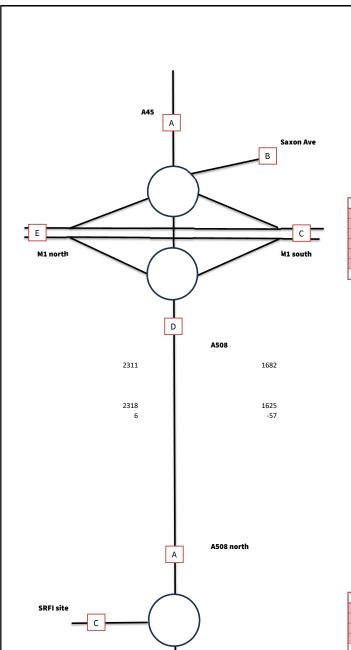
PCUs							
	Α	В	С	Total			
Α	0	1323	949	2272			
В	798	0	80	878			
С	401	9	0	410			
Total	1200	1331	1029	3560			



В

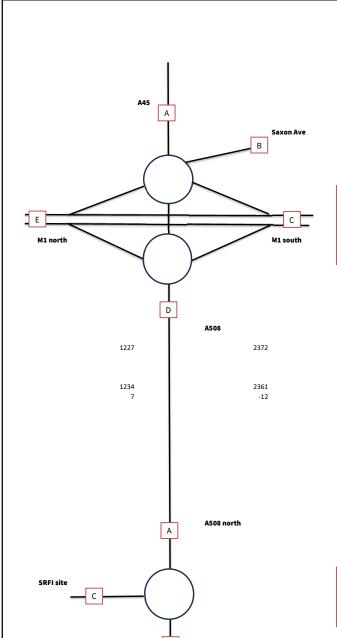
PCUs							
	Α	В	С	D	E	Total	
Α	24	302	843	1117	1129	3415	
В	0	0	94	53	143	290	
С	1196	27	0	84	0	1307	
D	1524	5	46	1	741	2318	
Е	1258	83	0	420	0	1761	
Total	4002	417	983	1675	2013	9091	
TOLAI	4002	417	303	1075	2013	3031	

PCUs							
	Α	В	С	Total			
Α	0	1125	493	1618			
В	1201	0	68	1268			
С	1123	84	0	1207			
Total	2324	1209	561	4093			



PCUs							
	Α	В	С	D	E	Total	
Α	44	28	644	1784	1274	3774	
В	26	0	39	24	104	193	
С	1093	37	0	75	0	1205	
D	778	24	77	17	307	1203	
Е	1874	173	0	408	0	2455	
Total	3815	262	760	2308	1685	8830	

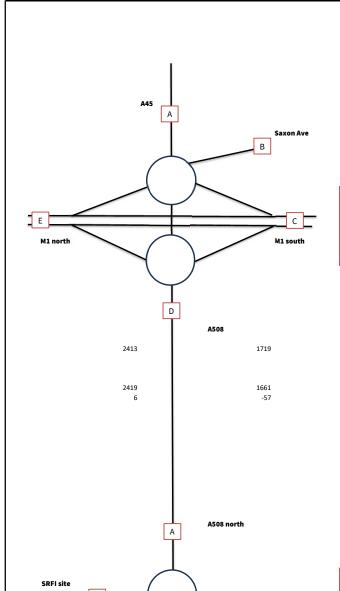
PCUs							
	Α	В	С	Total			
Α	0	1323	974	2297			
В	798	0	84	882			
С	412	9	0	421			
Total	1210	1332	1058	3600			



В

PCUs							
Α	В	С	D	E	Total		
24	302	843	1119	1129	3417		
0	0	94	53	143	290		
1196	27	0	88	0	1311		
1518	5	46	1	741	2311		
1258	83	0	421	0	1762		
3996	417	983	1682	2013	9092		
	24 0 1196 1518 1258	24 302 0 0 1196 27 1518 5 1258 83	A B C 24 302 843 0 0 94 1196 27 0 1518 5 46 1258 83 0	A B C D 24 302 843 1119 0 0 94 53 1196 27 0 88 1518 5 46 1 1258 83 0 421	A B C D E 24 302 843 1119 1129 0 0 94 53 143 1196 27 0 88 0 1518 5 46 1 741 1258 83 0 421 0		

PCUs							
	Α	В	С	Total			
Α	0	1125	500	1625			
В	1201	0	68	1268			
С	1117	80	0	1197			
Total	2318	1205	568	4091			



PCUs							
	Α	В	С	D	E	Total	
Α	44	28	644	1811	1274	3801	
В	26	0	39	24	104	193	
С	1093	37	0	95	0	1225	
D	788	24	84	17	314	1227	
E	1874	173	0	425	0	2472	
Total	3825	262	767	2372	1692	8918	

PCUs							
	Α	В	С	Total			
Α	0	1323	1038	2361			
В	798	0	93	892			
С	436	10	0	446			
Total	1234	1333	1131	3698			

			PCUs			
	Α	В	С	D	E	Total
Α	24	302	843	1137	1129	3435
В	0	0	94	53	143	290
С	1196	27	0	95	0	1318
D	1576	5	70	1	761	2413
E	1258	83	0	433	0	1774
Total	4054	417	1007	1719	2033	9229

PCUs						
	Α	В	С	Total		
Α	0	1125	536	1661		
В	1201	0	74	1275		
С	1218	95	0	1313		
Total	2419	1220	611	4250		

APPENDIX A
Segro Logistics Park Rugby and Kettering Vehicle Trip Rate
Comparison, ITP November 2023
Companson, it is november 2025

SEGRO Logistics Park Rugby and Kettering

> Vehicle Trip Rate Comparison

November 2023

SEGRO Logistics Park Rugby and Kettering

Version 2-0 November 2023

Produced by:

For:

Contact:

Integrated Transport Planning Ltd.

1st Floor, 1 Broadway
Nottingham
NG1 1PR
UNITED KINGDOM

0115 824 8250 stephanie.meyers@itpworld.net www.itpworld.net

Project Information Sheet

Client	SEGRO
Project Code	4285
Project Name	SEGRO Rugby & Kettering Trip Rate Mezzanine Study
Project Director	
Project Manager	
Quality Manager	
Additional Team Members	
Sub-Consultants	Road Data Services Ltd
Start Date	June 2023
File Location	Box\4285 SEGRO Rugby & Kettering Trip Rate Mezzanine Study\Project Files\Reports

Document Control Sheet

Ver.	Project Folder	Description	Prep.	Rev.	Арр.	Date
V2-0	Box\4285 SEGRO Rugby & Kettering Trip Rate	Final Report Submission	JP	SM	DP	09/11/23
V1-0	Mezzanine Study\Project Files\Reports	Draft Report Submission	JP	SM	DP	20/10/23

Notice

This report has been prepared for SEGRO in accordance with the terms and conditions of appointment. Integrated Transport Planning Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Table of Contents

1.	Introduction	2
	Report Structure	2
2.	Site Overview	3
	Rugby Gateway	3
	Kettering Gateway	5
3.	2023 Survey Methodology	7
4.	2023 Traffic Survey Trip Rate Analysis	9
	Surveyed Vehicle Trip Rate Findings	9
	Analysis of Mezzanine Impact on Trip Rates	14
5.	Surveyed v Assessed Trip Rate Comparisons	21
	Floor Area and Mezzanine Summary	22
	Rugby Gateway Trip Rate Comparisons	23
	Kettering Gateway Trip Rate Comparisons	25
	EMG1 Trip Rate Comparisons	26
6.	Summary and Conclusion	27

List of Tables

Table 2-1: Rugby Gateway Occupiers and Gross Floor Area	4
Table 2-2: Kettering Gateway Occupiers and Gross Floor Area	6
Table 3-1: Camera survey locations	7
Table 4-1: 2023 camera survey AM Peak Two-Way Trips (08:00 – 09:00)	10
Table 4-2: 2023 camera survey PM Peak Two-Way Trips (17:00 – 18:00)	11
Table 4-3: 2023 camera survey Daily (24 hour) Two-Way Trips	12
Table 4-4: Rugby Vehicle Trip Rates (Mezzanine versus No Mezzanine)	15
Table 4-5: Kettering Vehicle Trip Rates (Mezzanine versus No Mezzanine)	16
Table 4-6: Rugby and Kettering Combined Vehicle Trip Rates (Mezzanine versus No Mezzanine)	17
Table 5-1: Floor area and mezzanine summary	22
Table 5-2: Rugby Gateway assessed vehicle trip rates (2010 TA) (131,000 sqm)	23
Table 5-3: Rugby Gateway surveyed vehicle trip rates (108,929 sqm)	23
Table 5-4: Rugby Gateway assessed vehicle trip rates without modal share targets (201 (131,000 sqm)	
Table 5-5: Kettering Gateway assessed vehicle trip rates (2013 TA) (121,043sqm)	25
Table 5-6: Kettering Gateway surveyed vehicle trip rates (93,496 sqm)	25
Table 5-7: EMG1 assessed vehicle trip rates (2014 TA) (557,414 sqm)	26
Table 5-8: EMG1 2022 surveyed vehicle trip rates (288,479 sqm)	
List of Figures	
Figure 2-1: Kettering Gateway Unit Locations	3
Figure 2-2: Kettering Gateway Unit Locations	5

Executive Summary

Integrated Transport Planning Ltd (ITP) has been commissioned by SEGRO to carry out a vehicle trip rate assessment to understand if mezzanine levels at units at SEGRO Logistics Park Rugby Gateway (Rugby Gateway) and SEGRO Park Kettering Gateway (Kettering Gateway) have an impact on the number of vehicles at each site.

To obtain accurate on-site traffic data at both Rugby Gateway and Kettering Gateway, camera surveys were undertaken between the dates of Thursday 13th July 2023 and Wednesday 19th July 2023, capturing data for a 7-day period.

To streamline the raw data in the analysis process, an average calculation at each site has been completed for the data covering Thursday 13^{th} July 2023, Tuesday 18^{th} July 2023 and Wednesday 19^{th} July 2023. For each unit, three time periods have been assessed which mirror those considered in a previous East Midlands Gateway study: AM Peak (08:00 – 09:00), PM Peak (17:00 – 18:00) and 24-hour period (00:00 – 00:00).

Using the assessment of the recorded number of vehicle trips from each unit, and the Gross Floor Area (sqm), the associated vehicle trip rates per 100sqm were calculated.

Analysis at both Rugby Gateway and Kettering Gateway demonstrated that the surveyed vehicle trip rates were higher for units without mezzanine, compared to units with mezzanine. The following surveyed vehicle trip rates presents both sites combined into either units with mezzanine or without mezzanine:

- AM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.19
- PM Peak two-way trip rate: With mezzanine 0.10, without mezzanine 0.25
- Daily two-way trip rate: With mezzanine 2.47, without mezzanine 4.25

In conclusion, the analysis demonstrates that mezzanine levels do not appear to have a significant impact on vehicle trip rates; and that vehicle trip rates are more likely to be influenced by other factors such as the business model operations of occupiers. At both Rugby Gateway and Kettering Gateway, vehicle trip rates are in fact higher at units which do not have mezzanines; and therefore, may indicate that units with mezzanine space have business operations which result in lower vehicle trip rates than units which do not have mezzanine space.

Analysis understanding the impact of mezzanines has been conducted at both site-wide level at both Rugby Gateway and Kettering Gateway, as well as consolidating all surveyed data together; with the survey results indicating that surveyed vehicle trip rates are higher at units which do not have mezzanine space.

1. Introduction

- Integrated Transport Planning Ltd (ITP) has been commissioned by SEGRO to carry out a vehicle trip rate assessment to understand if mezzanine levels at units at SEGRO Logistics Park Rugby Gateway (Rugby Gateway) and SEGRO Park Kettering Gateway (Kettering Gateway) have an impact on the number of vehicles at each site.
- 1.2 This analysis builds on a similar comparative mezzanine trip rate assessment carried out at <u>SEGRO Logistics Park East Midlands Gateway</u> in July 2022 by ITP.
- Across these three large logistics parks this report aims to draw together an evidence base to determine the impact of mezzanines on traffic numbers at the site.
- 1.4 For reference throughout this report:
 - "Surveyed vehicle trip rates" refers to those derived from traffic survey data collected in July 2023
 - "Assessed vehicle trip rates" refers to those derived from the TRICS trip rate database and agreed with the Local Highway Authority and used within the respective Transport Assessments for the Rugby, Kettering and East Midlands Gateway logistics sites.

Report Structure

- 1.5 This report is organised into the following sections:
 - Section 2 provides background to the two sites including details of each unit.
 - Section 3 details the methodology to obtain 2023 traffic volumes.
 - Section 4 presents the findings of 2023 surveyed movements apportioned to individual units; and compares the surveyed traffic between units with and without mezzanines.
 - Section 5 compares the surveyed traffic volumes with assessed trips from respective Transport Assessments.
 - Section 6 provides a summary of the key findings from the assessment and draws together the conclusions.

2. Site Overview

Rugby Gateway

- 2.1 Rugby Gateway is a 120-acre logistics and distribution park located approximately 4.5km north of Rugby town centre and adjacent to Junction 1 of the M6. Outline planning permission was granted in August 2013 (Rugby planning portal ref: R10/1272) and construction of the five units was fully completed in 2017.
- In July 2023, there were five tenants on-site Amazon, DHL, Evri, H&M and TJX. The locations of these units are presented in Figure 2-1.

Figure 2-1: Kettering Gateway Unit Locations

Source: Microsoft Bing Maps (2023)

Table 2-1 details the occupiers and Gross Floor Area (GFA) of the five units as of July 2023, when the traffic surveys were completed.

Table 2-1: Rugby Gateway Occupiers and Gross Floor Area

Plot	Occupier	2023 Gross Floor Area (sqm)						
PIOL	Occupiei	Floor Area	Mezzanine	Total				
1	H&M	22,111	6,503	28,614				
2	Amazon 27,128		35,856	62,984				
3	DHL	16,769	0	16,769				
4	TJX	20,996	19,881	40,877				
5	Evri	21,925	0	21,925				
Total	l	108,929	62,240	171,169				

Kettering Gateway

- 2.5 Kettering Gateway is a 70-acre logistics and distribution park located approximately 4km south of Kettering town centre, near Burton Latimer and Junction 10 of the A14. Outline planning permission was granted in December 2018 (Kettering planning portal ref: KET/2018/0774) and construction of the four units was fully completed in 2022.
- 2.6 In July 2023, there were two tenants on-site Bunzl (occupying two units) and Ball.

 One of the four units is unoccupied. This unoccupied unit has been excluded from the analysis herein. The locations of these units are presented in Figure 2-2.

Figure 2-2: Kettering Gateway Unit Locations

Source: Microsoft Bing Maps (2023)

- 2.7 Kettering Gateway was sold by SEGRO in July 2023.
- Table 2-2 details the occupiers and GFA of the three occupied units as of July 2023, when the traffic surveys were completed.

Table 2-2: Kettering Gateway Occupiers and Gross Floor Area

Plot	Occupier	2023 Gross Floor Area (sqm)						
Piot		Floor Area	Mezzanine	Total				
3	Bunzl	13,935	1,152	15,087				
4A	Bunzl 21,793		0	21,793				
4B	Ball 57,767		0	57,767				
Total	l	93,496	1,152	94,648				

3. 2023 Survey Methodology

- To obtain accurate on-site traffic data at both Rugby Gateway and Kettering Gateway, camera surveys were undertaken between the dates of Thursday 13th July 2023 and Wednesday 19th July 2023, capturing data for a 7-day period. The traffic surveys were completed by an independent third-party traffic survey specialist.
- In total, 10 cameras were installed at Rugby Gateway and 6 cameras at Kettering Gateway to cover all vehicular access points for both HGVs and employees at all occupied units. A summary of the camera locations is shown in Table 3-1.

Table 3-1: Camera survey locations

Site	Plot	Occupier	Camera Locations	Camera Reference
	1	H&M	Employee Car Park (Inbound/Outbound) & HGV (Inbound/Outbound)	• 1
Rugby	2	Amazon	 Employee Outbound HGV (Inbound/Outbound) & Employee Inbound Entrance 	2A2B
	3	DHL	HGV (Inbound/Outbound)Employee Car Park (Inbound/Outbound)	3A3B
	4	TJX	HGV (Inbound/Outbound)Employee Car Park (Inbound/Outbound)	4A4B
	5	Evri	HGV (Inbound)HGV (Outbound)Employee Car Park (Inbound/Outbound)	5A5B5C
	3	Bunzl	Employee Car Park (Inbound/Outbound)HGV (Inbound/Outbound)	3A3B
Kettering	4A	Bunzl	Employee Car Park (Inbound/Outbound)HGV (Inbound/Outbound)	4A14A2
	4B	Ball	Employee Car Park (Inbound/Outbound)HGV (Inbound/Outbound)	4B14B2

The raw data from each camera survey has been consolidated by ITP to obtain an overall number of vehicle trips per unit and considers all accesses.

- For this assessment, vehicle classes have been summarised into either Light Vehicle of Heavy Goods Vehicle (HGV):
 - Light Vehicle: Motorcycle, car, van, Light Goods Vehicle <3.5 tonnes
 - Heavy Goods Vehicle: >3.5 tonnes, 2 or more axles rigid, 3 or more axles artic
- To streamline the raw data in the analysis process, an average calculation has been completed for the data covering Thursday 13th July 2023, Tuesday 18th July 2023 and Wednesday 19th July 2023. This has been done to ensure comparability with the East Midlands Gateway (EMG1) analysis which also considered these three 'neutral' days and has been deemed appropriate to provide a typical weekday representation of vehicle movements.
- For each unit, three time periods have been assessed which mirror those considered in the previous EMG1 study:
 - 08:00 09:00
 - 17:00 18:00
 - 00:00 00:00 (24-hour period)

4. 2023 Traffic Survey Trip Rate Analysis

Surveyed Vehicle Trip Rate Findings

- The findings from the July 2023 camera survey data have been presented in the following tables:
 - Table 4-1: AM Peak Two-Way Trips (08:00 09:00)
 - Table 4-2: PM Peak Two-Way Trips (17:00 18:00)
 - Table 4-3: Daily (24 hour) Two-Way Trips
- Using the assessment of the recorded number of vehicle trips from each unit, and the Gross Floor Area (sqm), the associated vehicle trip rates per 100sqm have been calculated and are also presented in the following tables.
- The tables also include mezzanine area (sqm), to demonstrate units with mezzanine areas, however the vehicle trip rates calculated are based on the Gross Floor Area (sqm) to robustly enable analysis to compare whether surveyed vehicle trip rates are impacted by mezzanine areas.
- Please note, as an average of vehicle trips has been calculated covering 3 days of data; some total vehicle trips may not appear to add up between light and HGV due to rounding; however, vehicle trip rates are calculated from the true, non-rounded value.

Table 4-1: 2023 camera survey AM Peak Two-Way Trips (08:00 – 09:00)

Site	Plot	Occupier	(sq	lm)	Surve	eyed Trips (2023)	Trip Rate (per 100sqm GFA)		
Site	PIOL	Occupier	GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
	1	H&M	22,111	6,503	6	7	14	0.03	0.03	0.06
	2	Amazon	27,128	35,856	26	6	32	0.10	0.02	0.12
December	3	DHL	16,769	0	18	10	28	0.11	0.06	0.17
Rugby	4	TJX	20,996	19,881	31	4	35	0.15	0.02	0.17
	5	Evri	21,925	0	63	59	121	0.29	0.27	0.55
	-	Total	108,929	62,240	145	86	231	0.13	0.08	0.21
	3	Bunzl	13,935	1,152	9	6	15	0.06	0.04	0.11
W-44	4A	Bunzl	21,793	0	31	6	37	0.14	0.03	0.17
Kettering	4B	Ball	57,767	0	35	4	39	0.06	0.01	0.07
	-	Total	93,496	1,152	74	17	91	0.08	0.02	0.10

Table 4-2: 2023 camera survey PM Peak Two-Way Trips (17:00 – 18:00)

Site	Plot	Occupier	(sq	m)	Surve	yed Trips (2023)	Trip Rate (per 100sqm GFA)		
Site	Piot	Occupier	GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
	1	H&M	22,111	6,503	4	7	11	0.02	0.03	0.05
	2	Amazon	27,128	35,856	29	13	42	0.11	0.05	0.15
December	3	DHL	16,769	0	29	7	36	0.17	0.04	0.21
Rugby	4	TJX	20,996	19,881	24	1	25	0.11	0.00	0.12
	5	Evri	21,925	0	96	75	171	0.44	0.34	0.78
	-	Total	108,929	62,240	182	102	284	0.17	0.09	0.26
	3	Bunzl	13,935	1,152	3	3	6	0.02	0.02	0.04
V attavina	4A	Bunzl	21,793	0	24	2	26	0.11	0.01	0.12
Kettering	4B	Ball	57,767	0	54	4	58	0.09	0.01	0.10
	-	Total	93,496	1,152	81	9	90	0.09	0.01	0.10

Table 4-3: 2023 camera survey Daily (24 hour) Two-Way Trips

Site	Plot	Occupier	(sqm)		Surve	eyed Trips (2023)	Trip Rate (per 100sqm GFA)		
Site	Piot	Occupier	GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
	1	H&M	22,111	6,503	360	131	491	1.63	0.59	2.22
	2	Amazon	27,128	35,856	565	149	714	2.08	0.55	2.63
D . I	3	DHL	16,769	0	525	230	755	3.13	1.37	4.50
Rugby	4	TJX	20,996	19,881	667	46	713	3.18	0.22	3.40
	5	Evri	21,925	0	1,759	1,464	3,223	8.02	6.68	14.70
	-	Total	108,929	62,240	3,877	2,020	5,897	3.56	1.85	5.41
	3	Bunzl	13,935	1,152	100	63	163	0.72	0.45	1.17
V attavina	4A	Bunzl	21,793	0	357	88	446	1.64	0.41	2.04
Kettering	4B	Ball	57,767	0	509	87	596	0.88	0.15	1.03
	-	Total	93,496	1,152	966	239	1,204	1.03	0.26	1.29

- The tables above detail the surveyed trips and surveyed vehicle trip rates across the AM Peak, PM Peak and 24 hour period for all units across both Rugby Gateway and Kettering Gateway, with the key findings summarised:
 - Rugby Gateway generated a significantly higher number of vehicle trips compared to Kettering Gateway in the AM Peak, PM Peak and 24 hours, as such also resulting in higher vehicle trip rates across all periods:
 - o AM Peak two-way trip rate: Rugby 0.21, Kettering 0.10
 - PM Peak two-way trip rate: Rugby 0.26, Kettering 0.10
 - Daily two-way trip rate: Rugby 5.41, Kettering 1.29
 - Plot 5 (Evri) at Rugby Gateway recorded the highest two-way traffic volumes and trip rates across all time periods, with total daily two-way surveyed trips at 3,223 vehicles (1,759 light vehicles and 1,464 HGVs). It is noted that the Evri plot does not have mezzanine, despite having the highest vehicle trip rates, with analysis of the impact of mezzanines provided in the following section.
 - At both sites, there was a higher proportion of light vehicles compared to HGVs:
 - Rugby Gateway A total of 5,897 vehicles were recorded entering and exiting the site across a 24-hour period, with 3,877 (66%) of these being light vehicles and 2,020 (34%) being HGVs.
 - Kettering Gateway A total of 1,204 vehicles were recorded entering and exiting the site across a 24-hour period, with 966 (80%) of these being light vehicles and 239 (20%) being HGVs.
- The subsequent section of this report provides analysis of the key aspect of the study, to understand the impact that mezzanines could have on surveyed vehicle trips and surveyed vehicle trip rates.

Analysis of Mezzanine Impact on Trip Rates

- To further understand the impact that mezzanines could have on surveyed vehicle trip rates at both Rugby Gateway and Kettering Gateway, the units at both logistics parks have been aggregated into 'with mezzanine' and 'without mezzanine'.
- 4.8 Classifying the units by whether they contain a mezzanine or not enables comparisons of vehicle trip rates to determine if mezzanines have any impact on the number of vehicle trips at Rugby Gateway and Kettering Gateway.
- 4.9 As such, the camera survey data and vehicle trip rates have been consolidated into the following three tables:
 - Table 4-4 comparing vehicle trips rates at Rugby Gateway (mezzanine versus no mezzanine) in the AM Peak, PM Peak and Daily
 - Table 4-5 comparing vehicle trips rates at Kettering Gateway (mezzanine versus no mezzanine) in the AM Peak, PM Peak and Daily
 - Table 4-6 comparing vehicle trips rates at both Rugby Gateway and Kettering Gateway (mezzanine versus no mezzanine) in the AM Peak, PM Peak and Daily

Table 4-4: Rugby Vehicle Trip Rates (Mezzanine versus No Mezzanine)

Period	Mezzanine?	(sqm)		Surveyed Trips (2023)			Trip Rate (per 100sqm GFA)		
Periou		GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
A N 4	With	70,235	62,240	64	17	81	0.09	0.02	0.12
AM	Without	38,694	0	81	69	150	0.21	0.18	0.39
DN 4	With	70,235	62,240	57	20	77	0.08	0.03	0.11
PM	Without	38,694	0	125	82	207	0.32	0.21	0.53
Daile	With	70,235	62,240	1,592	326	1,918	2.27	0.46	2.73
Daily	Without	38,694	0	2,285	1,694	3,979	5.90	4.38	10.28

^{*}Rugby with Mezzanine includes Plot 1 H&M, Plot 2 Amazon and Plot 4 TJX, Rugby without Mezzanine includes Plot 3 DHL and Plot 5 Evri

Table 4-5: Kettering Vehicle Trip Rates (Mezzanine versus No Mezzanine)

Period	Mezzanine?	(sqm)		Surveyed Trips (2023)			Trip Rate (per 100sqm GFA)		
Periou		GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
A N 4	With	13,935	1,152	9	6	15	0.06	0.04	0.11
AM	Without	79,560	0	65	11	76	0.08	0.01	0.10
DN 4	With	13,935	1,152	3	3	6	0.02	0.02	0.04
PM	Without	79,560	0	78	6	84	0.10	0.01	0.11
Daile	With	13,935	1,152	100	63	163	0.72	0.45	1.17
Daily	Without	79,560	0	866	176	1,042	1.09	0.22	1.31

^{*}Kettering with Mezzanine includes Plot 3 Bunzl, Kettering without Mezzanine includes Plot 4A Bunzl and Plot 4B Ball

Table 4-6: Rugby and Kettering Combined Vehicle Trip Rates (Mezzanine versus No Mezzanine)

Period	Mezzanine?	(sqm)		Surveyed Trips (2023)			Trip Rate (per 100sqm GFA)		
Periou	Wiezzaillie:	GFA	Mezzanine	Light	HGV	Total	Light	HGV	Total
A N 4	With	84,170	63,392	73	23	96	0.09	0.03	0.11
AM	Without	118,255	0	146	79	226	0.12	0.07	0.19
DN 4	With	84,170	63,392	60	23	83	0.07	0.03	0.10
PM	Without	118,255	0	203	88	291	0.17	0.07	0.25
Daile	With	84,170	63,392	1,692	389	2,081	2.01	0.46	2.47
Daily	Without	118,255	0	3,151	1,870	5,020	2.66	1.58	4.25

^{*}Rugby with Mezzanine includes Plot 1 H&M, Plot 2 Amazon and Plot 4 TJX, Rugby without Mezzanine includes Plot 3 DHL and Plot 5 Evri

^{*}Kettering with Mezzanine includes Plot 3 Bunzl, Kettering without Mezzanine includes Plot 4A Bunzl and Plot 4B Ball

4.10 To summarise the tables above, the **surveyed vehicle trip rates are not impacted by the presence of mezzanines at units**. At both Rugby Gateway and Kettering Gateway,
vehicle trip rates are in fact **higher at units which do not have mezzanines**; and
therefore, mezzanines did not increase vehicle trip rates. Further analysis elaborating
on these results is provided below.

Rugby Gateway – Analysis of mezzanine impact on trip rates

- At Rugby Gateway, 3 units (Plot 1 H&M, Plot 2 Amazon and Plot 4 TJX) contained mezzanine space, with a combined floor area of 70,235sqm and mezzanine space of 62,240sqm; totalling 132,475 sqm. In contrast, 2 units (Plot 3 DHL and Plot 5 Evri) did not have mezzanines and had a combined floor area of 38,694 sqm.
- 4.12 The following surveyed vehicle trip rates at Rugby Gateway were identified:
 - AM Peak two-way trip rate: With mezzanine 0.12, without mezzanine 0.39
 - PM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.53
 - Daily two-way trip rate: With mezzanine 2.73, without mezzanine 10.28
- During all three time periods analysed, the surveyed vehicle trip rates were higher for units without mezzanine, compared to units with mezzanine.
- As noted earlier in the report, Plot 5 (Evri) at Rugby Gateway recorded the highest two-way traffic volumes and trip rates across all time periods, with total daily two-way surveyed trips at 3,223 vehicles (1,759 light vehicles and 1,464 HGVs). As such, to demonstrate that Plot 5 Evri did not skew the results, further analysis was undertaken which discounted the Evri unit; completing the analysis for no mezzanines with Plot 3 DHL only.
- 4.15 The following surveyed vehicle trip rates were identified:
 - AM Peak two-way trip rate: With mezzanine 0.12, without mezzanine 0.17
 - PM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.21
 - Daily two-way trip rate: With mezzanine 2.73, without mezzanine 4.50
- Although the trip rates for Evri, the highest vehicle traffic volumes from the surveys, have been discounted, the above analysis still demonstrates that surveyed vehicle trip rates were still higher for units without mezzanine, compared to Plot 3 DHL (with mezzanine).

Kettering Gateway – Analysis of mezzanine impact on trip rates

- At Kettering Gateway, only 1 unit (Plot 3 Bunzl) contained mezzanine space, with a floor area of 13,935 sqm and mezzanine space of 1,152 sqm. In contrast, 2 units (Plot 4A Bunzl and Plot 4B Ball) did not have mezzanines and had a combined floor area of 79,560 sqm.
- 4.18 The following surveyed vehicle trip rates at Kettering Gateway were identified:
 - AM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.10
 - PM Peak two-way trip rate: With mezzanine 0.04, without mezzanine 0.11
 - Daily two-way trip rate: With mezzanine 1.17, without mezzanine 1.31
- During all both the PM Peak and 24-hour periods, the surveyed vehicle trip rates were higher for units without mezzanine, compared to units with mezzanine. In the AM Peak, vehicle trip rates were 0.01 higher for units with mezzanine; however, the daily vehicle trip rates demonstrate that overall, the surveyed vehicle trip rates over a 24-hour period are higher in units without mezzanines at Kettering Gateway.

Rugby Gateway and Kettering Gateway – Analysis of mezzanine impact on trip rates

- When considering both sites together, 4 units contained mezzanine space, with a combined floor area of 84,170 sqm and mezzanine space of 63,392 sqm. In contrast, 4 units did not have mezzanines and had a combined floor area of 118,255 sqm.
- 4.21 The following surveyed vehicle trip rates at both sites combined were identified:
 - AM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.19
 - PM Peak two-way trip rate: With mezzanine 0.10, without mezzanine 0.25
 - Daily two-way trip rate: With mezzanine 2.47, without mezzanine 4.25
- 4.22 When considering both sites combined, the surveyed vehicle trip rates were higher for units without mezzanine, compared to units with mezzanine during all three time periods.
- To summarise, the analysis demonstrates that mezzanine levels do not appear to have a significant impact on vehicle trip rates; and that vehicle trip rates are more likely to be influenced by other factors such as the business model operations of occupiers. At both Rugby Gateway and Kettering Gateway, vehicle trip rates are in fact higher at units which do not have mezzanines; and therefore, may indicate that units with mezzanine space have business operations which result in lower vehicle trip rates than units which do not have mezzanine space.
- 4.24 Analysis understanding the impact of mezzanines has been conducted at both sitewide level at both Rugby Gateway and Kettering Gateway, as well as consolidating all surveyed data together; with the survey results indicating that surveyed vehicle trip rates are higher at units which do not have mezzanine space.

5. Surveyed v Assessed Trip Rate Comparisons

- This chapter of the report provides a comparative assessment of the agreed vehicle trip rates determined at the planning stage of Rugby Gateway, Kettering Gateway and EMG1 (data taken from the previous 2022 study) and the surveyed vehicle trip rates.
- It is understood that mezzanine floor areas were not considered at the point of any of the planning applications being submitted, however as set out in this document, many units now include mezzanine floor area. As such, this comparative assessment further helps determine whether this additional mezzanine floor space has impacted vehicle trip rates.
- It is noted that the 'surveyed vehicle trip rates' for EMG1 are derived from traffic survey data collected in May 2022. For further information regarding this assessment methodology and full details of the analysis, please refer to document 'SEGRO Logistics Park East Midlands Gateway Vehicle Trip Rate Comparison' (July 2022).
- For Rugby Gateway and Kettering Gateway, 'surveyed vehicle trip rates' are derived from the July 2023 camera surveys as set out in the methodology chapter of this report.
- 'Assessed vehicle trip rates' are derived from the following Transport Assessments (TAs):
 - Rugby Gateway 2010 Transport Assessment
 - Kettering Gateway 2013 Transport Assessment
 - EMG1 2014 Transport Assessment
- Due to both the Rugby Gateway TA and Kettering Gateway TA providing assessed vehicle trip rates for the AM peak and PM peak only, these peaks were used for the comparative assessment in this chapter.
- As such, the AM peak and PM peak vehicle trip rates were used as the basis of comparison, unlike the EMG1 vehicle trip rate assessment undertaken in 2022, which also included comparisons of daily trip rates.

Floor Area and Mezzanine Summary

To provide further context for the trip rate comparisons, Table 5-1 summarises the floor areas and mezzanine space at all three sites; comparing the floor areas which were assessed in the three respective TAs and the floor areas at the time of the traffic surveys (July 2023 for Rugby Gateway and Kettering Gateway, May 2022 for EMG1).

Table 5-1: Floor area and mezzanine summary

		TA sqm		Surveyed sqm			
	Floor Area Mezzanine Tot		Total	Floor Area	Mezzanine	Total	
Rugby	131,000	0	131,000	108,929	62,240	171,169	
Kettering	121,043	0	121,043	93,496	1,152	94,648	
EMG1	557,414	0	557,414	288,479	138,306	426,785	

- 5.9 It is understood that mezzanine floor areas were not considered at the point of any of the planning applications being submitted, therefore mezzanine space is assumed as 0 for all three sites in the TAs.
- The following floor areas were used to compare vehicle trip rates, whereby mezzanine floor areas were not included for comparative assessment purposes:
 - Rugby Gateway Assessed (131,000 sqm) v surveyed (108,929 sqm)
 - Kettering Gateway Assessed (121,043 sqm) v surveyed (93,496 sqm)
 - EMG1 Assessed (557,414 sqm) v surveyed (288,479 sqm)

Rugby Gateway Trip Rate Comparisons

Table 5-2 presents the assessed AM peak and PM peak vehicle trip rates based on the 2010 TA and its associated 131,000 sqm floor area. Table 5-3 presents the surveyed AM peak and PM peak vehicle trip rates based on the current floor area of 108,929 sqm (62,240 sqm mezzanine floor area not included for comparative assessment purposes).

Table 5-2: Rugby Gateway assessed vehicle trip rates (2010 TA) (131,000 sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound Outbound Two-way		Inbound	Outbound	Two-way		
AM Peak	180	91	271	0.14	0.07	0.21	
PM Peak	70 176		246	0.05	0.13	0.19	

Table 5-3: Rugby Gateway surveyed vehicle trip rates (108,929 sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound	nbound Outbound T		Inbound	Outbound	Two-way	
AM Peak	148	83		0.14	0.08	0.21	
PM Peak	126 158		284	0.12	0.15	0.26	

- Comparisons of the assessed vehicle trip rates and surveyed vehicle trip rates show that the traffic volumes and vehicle trip rates are comparable in both the AM peak and PM peak.
- Overall, there are 40 fewer two-way surveyed vehicle trips made in the AM peak and 38 more two-way surveyed vehicle trips made in the PM peak, when comparing against the 2010 assessed vehicle trip generation. As can be seen from the above tables, the surveyed vehicle trip rates and the assessed vehicle trip rates are both 0.21 for the AM peak. However, the surveyed vehicle trip rate is 0.26 compared to the assessed vehicle trip rate of 0.19 (0.07 higher).
- Notwithstanding this, it is noted that in the Rugby Gateway 2013 TA, an ambitious proposed modal share of 49.6% was applied to car/van driver, compared to the existing modal share of 69.6%.

Table 5-4 demonstrates the assessed vehicle trip rates should the ambitious modal share targets not be applied, and the existing modal share split be applied.

Table 5-4: Rugby Gateway assessed vehicle trip rates without modal share targets (2010 TA) (131,000 sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound	Inbound Outbound Two-v		Inbound	Outbound	Two-way	
AM Peak	253	128	380	0.19	0.10	0.29	
PM Peak	98 247		345	0.07	0.19	0.26	

- Should the existing modal share of 69.6% car driver be applied, 380 two-way trips would be made in the AM peak and 345 two-way trips would be made in the PM peak; thus, significantly higher than both the surveyed vehicle trips and assessed (based on 49.6% car driver).
- In addition, the assessed vehicle trip rate based on existing modal share would be higher than the surveyed vehicle trip rates in the AM peak, and the same in the PM peak.
- 5.18 Ultimately, this demonstrates that sustainable measures to meet the ambitious modal share targets of 49.6% may not have been implemented effectively to date. This may be a contributing factor as to why surveyed vehicle trip rates are slightly higher than assessed vehicle trip rates, rather than the influence of mezzanine floor area which has been demonstrated in Chapter 4 to not impact vehicle trip rates on a unit-by-unit basis at Rugby Gateway.

Kettering Gateway Trip Rate Comparisons

Table 5-5 presents the assessed AM peak and PM peak vehicle trip rates based on the 2013 TA and its associated 121,043 sqm floor area. Table 5-6 presents the surveyed AM peak and PM peak vehicle trip rates based on the current floor area of 93,496 sqm (1,152 sqm mezzanine floor area not included for comparative assessment purposes).

Table 5-5: Kettering Gateway assessed vehicle trip rates (2013 TA) (121,043sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound	Inbound Outbound Two-v		Inbound	Outbound	Two-way	
AM Peak	521	147	668	0.43	0.12	0.55	
PM Peak	92 435		527	0.08	0.36	0.44	

Table 5-6: Kettering Gateway surveyed vehicle trip rates (93,496 sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound Outbound Two-wa		Two-way	Inbound	Outbound	Two-way	
AM Peak	74	17	91	0.08	0.02	0.10	
PM Peak	15 75		90	0.02	0.08	0.10	

- 5.20 Comparisons of the assessed vehicle trip rates and surveyed vehicle trip rates show that the traffic volumes and vehicle trip rates are lower in 2023 in both the AM peak and PM peak.
- Overall, there are 577 fewer two-way surveyed vehicle trips made in the AM peak and 437 fewer two-way surveyed vehicle trips made in the PM peak, when comparing against the 2013 assessed vehicle trip generation. As can be seen from the above tables, the surveyed vehicle trip rates are significantly lower than the assessed vehicle trip rates.

EMG1 Trip Rate Comparisons

Table 5-7 presents the assessed AM peak and PM peak vehicle trip rates based on the 2014 TA and its associated 557,414 sqm floor area. Table 5-8 presents the surveyed AM peak and PM peak vehicle trip rates based on the current floor area of 288,479 sqm (138,306 sqm mezzanine floor area not included for comparative assessment purposes).

Table 5-7: EMG1 assessed vehicle trip rates (2014 TA) (557,414 sqm)

	Tı	rip Generatio	n	Trip Rates			
	Inbound	nbound Outbound Two-way		Inbound	Outbound	Two-way	
AM Peak	780	201	981	0.140	0.036	0.176	
PM Peak	273 736		1,009	0.049	0.132	0.181	

Table 5-8: EMG1 2022 surveyed vehicle trip rates (288,479 sqm)

	Tı	rip Generatio	on	Trip Rates			
	Inbound	ound Outbound Two-way I		Inbound	Outbound	Two-way	
AM Peak	320	111	431	0.111	0.038	0.149	
PM Peak	210 248		458	0.073	0.086	0.159	

- 5.23 Comparisons of the assessed vehicle trip rates and surveyed vehicle trip rates show that the traffic volumes and vehicle trip rates are lower in 2022 in both the AM peak and PM peak.
- Overall, there are 550 fewer two-way surveyed vehicle trips made in the AM peak and 551 fewer two-way surveyed vehicle trips made in the PM peak, when comparing against the 2014 assessed vehicle trip generation. As can be seen from the above tables, the surveyed vehicle trip rates are also lower than the assessed vehicle trip rates.

6. Summary and Conclusion

- Integrated Transport Planning Ltd has been commissioned by SEGRO to carry out a vehicle trip rate assessment to understand if mezzanine levels at units at SEGRO Logistics Park Rugby Gateway (Rugby Gateway) and SEGRO Park Kettering Gateway (Kettering Gateway) have an impact on the number of vehicles at each site.
- To obtain accurate on-site traffic data at both Rugby Gateway and Kettering Gateway, camera surveys were undertaken between the dates of Thursday 13th July 2023 and Wednesday 19th July 2023, capturing data for a 7-day period.
- To streamline the raw data in the analysis process, an average calculation has been completed for the data covering Thursday 13th July 2023, Tuesday 18th July 2023 and Wednesday 19th July 2023. For each unit, three time periods have been assessed which mirror those considered in the previous EMG1 study: AM Peak (08:00 09:00), PM Peak (17:00 18:00) and 24-hour period (00:00 00:00).
- Using the assessment of the recorded number of vehicle trips from each unit, and the Gross Floor Area (sqm), the associated vehicle trip rates per 100sqm were calculated.
- Analysis at both Rugby Gateway and Kettering Gateway demonstrated that the surveyed vehicle trip rates were higher for units without mezzanine, compared to units with mezzanine. The following surveyed vehicle trip rates presents both sites combined into either units with mezzanine or without mezzanine:
 - AM Peak two-way trip rate: With mezzanine 0.11, without mezzanine 0.19
 - PM Peak two-way trip rate: With mezzanine 0.10, without mezzanine 0.25
 - Daily two-way trip rate: With mezzanine 2.47, without mezzanine 4.25
- In conclusion, the analysis demonstrates that mezzanine levels do not appear to have a significant impact on vehicle trip rates; and that vehicle trip rates are more likely to be influenced by other factors such as the business model operations of occupiers. At both Rugby Gateway and Kettering Gateway, vehicle trip rates are in fact higher at units which do not have mezzanines; and therefore, may indicate that units with mezzanine space have business operations which result in lower vehicle trip rates than units which do not have mezzanine space.
- 6.7 Analysis understanding the impact of mezzanines has been conducted at both sitewide level at both Rugby Gateway and Kettering Gateway, as well as consolidating all surveyed data together; with the survey results indicating that surveyed vehicle trip rates are higher at units which do not have mezzanine space.

Integrated Transport Planning Ltd Cornerblock 2 Cornwall Street **Birmingham** B3 2DX UK +44 (0)121 285 7301

Integrated Transport Planning Ltd 2 Abbey Gardens Great College Street, Westminster **London** SW1P 3NL UK +44 (0)7498 563196

Integrated Transport Planning Ltd 1 Broadway **Nottingham** NG1 1PR UK +44 (0)115 824 8250

www.itpworld.net

APPENDIX E
ALL ENDIA E
2031 traffic flows data from latest version of NSTM

Junction Turning Flows, Units: PCUs Actual Flows Junction: Northampton Gateway Site Access

Arm Description

Arm	Description
Α	A508 North
В	A508 South
С	Site Access

	2031 Ref Case AM Peak										
MODELLED											
AU > /	All Vehicle To Arm										
All V	enicie	Α	В	С	D	Е	F	G	TOTAL		
	Α	0	1323	861					2183		
	В	798	0	66					865		
	С	367	7	0					374		
From Arm	D										
	E										
ŭ	F										
	G										
	TOTAL	1165	1330	927					3422		

By Vehicle Ty	pε
---------------	----

	MODELLED										
(ar	To Arm									
_ ~	cai	Α	В	С	D	E	F	G	TOTAL		
	Α	0	1018	553					1570		
	В	649	0	49					698		
Arm	С	62	6	0					68		
₹	D										
From	E										
ŭ.	F										
	G										
	TOTAL	711	1023	602					2336		

	MODELLED								
LO	21/				To .	Arm			
L	3 V	Α	В	С	D	E	F	G	TOTAL
	Α	0	231	20					251
	В	87	0	17					104
Arm	С	3	1	0					4
₹	D								
From,	E								
ᇤ	F								
	G								
	TOTAL	90	233	37					360

	MODELLED								
L/	ΒV				То	Arm			
110	3 V	Α	В	С	D	E	F	G	TOTAL
	Α	0	68	288					357
	В	57	0	0					57
E	С	301	0	0					301
Ā	D								
From Arm	E								
Ē	F								
	G								
	TOTAL	358	68	288					715

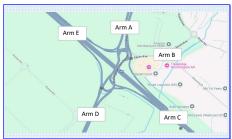
	MODELLED								
Ei,	ked .				To	Arm			
1.17	leu	Α	В	С	D	E	F	G	TOTAL
	Α	0	5	0					5
	В	6	0	0					6
Ę	С	0	0	0					0
From Arm	D								
E	E								
Œ.	F								
	G								
	TOTAL	6	5	0					11

			20	31 Ref Ca	ase PM Pe	eak						
	MODELLED											
All V	All Vehicle To Arm											
All Vi	SHICIE	Α	A B C D E F G TOTAL									
	Α	0	1125	449					1574			
	В	1201	1201 0 61 1262									
Arm	C	1029 72 0 1101										
Ā	D											

Die	1/0	hiala	Time

G TOTAL 2229 1197

	MODELLED								
C	ar				To .	Arm			
U	cai	A B C D E F G							TOTAL
	Α	0	1056	180					1236
	В	912	0	22					933
ε	С	699	67	0					766
From Arm	D								
E	E								
正	F								
	G								
	TOTAL	1611	1122	202					2935


	MODELLED								
LC	21/				To	Arm			
LC	3 V	Α	В	С	D	E	F	G	TOTAL
	Α	0	50	11					60
	В	186	0	1					187
Arm	С	31	6	0					36
₹	D								
From	E								
듄	F								
	G								
	TOTAL	217	55	11					284

	MODELLED								
Н					To .	Arm			
110	3 V	Α	В	С	D	E	F	G	TOTAL
	Α	0	14	258					272
	В	97	0	39					136
Arm	C	299	0	0					299
₹	D								
From.	E								
ᇤ	F								
	G								
	TOTAL	396	14	297					707

				MODI	ELLED				
Fix	and .				To .	Arm			
FIX	eu	Α	В	С	D	E	F	G	TOTAL
	Α	0	6	0					6
	В	6	0	0					6
ε	С	0	0	0					0
From Arm	D								
E	E								
Œ	F								
	G								
	TOTAL	6	6	0					11

Junction Turning Flows, Units: PCUs Actual Flows Junction: M1 Junction 15 Arm A

Arm Description

Arm	Description
Α	A45
В	Saxon Avenue
С	M1 Southeast
D	A508
E	M1 Northwest

	2031 Ret Case AM Peak								
				MODE	ELLED				
All M	ehicle				To.	Arm			
All V	enicie	A B C D E F G TOTAL							
	Α	44	28	644	1735	1274			3725
	В	26	0	39	24	104			193
Αm	С	1093	37	0	40	0			1170
D 758 24 64 17 295 1:									1158
	E	1874	173	0	379	0			2426

G TOTAL 3795 262 747 2195 1673

By Vehicle	Туре:								
				MODI	ELLED				
C	ar				To	Arm			
	rai	Α	В	С	D	E	F	G	TOTAL
	Α	42	26	305	1209	907			2489
	В	26	0	35	24	103			188
ε	С	933	36	0	37	0			1006
Ā	D	501	24	64	0	124			713
From Arm	Е	1333	171	0	293	0			1797
ᇤ	F								
	G								
	TOTAL	2835	257	404	1563	1134			6193

8672

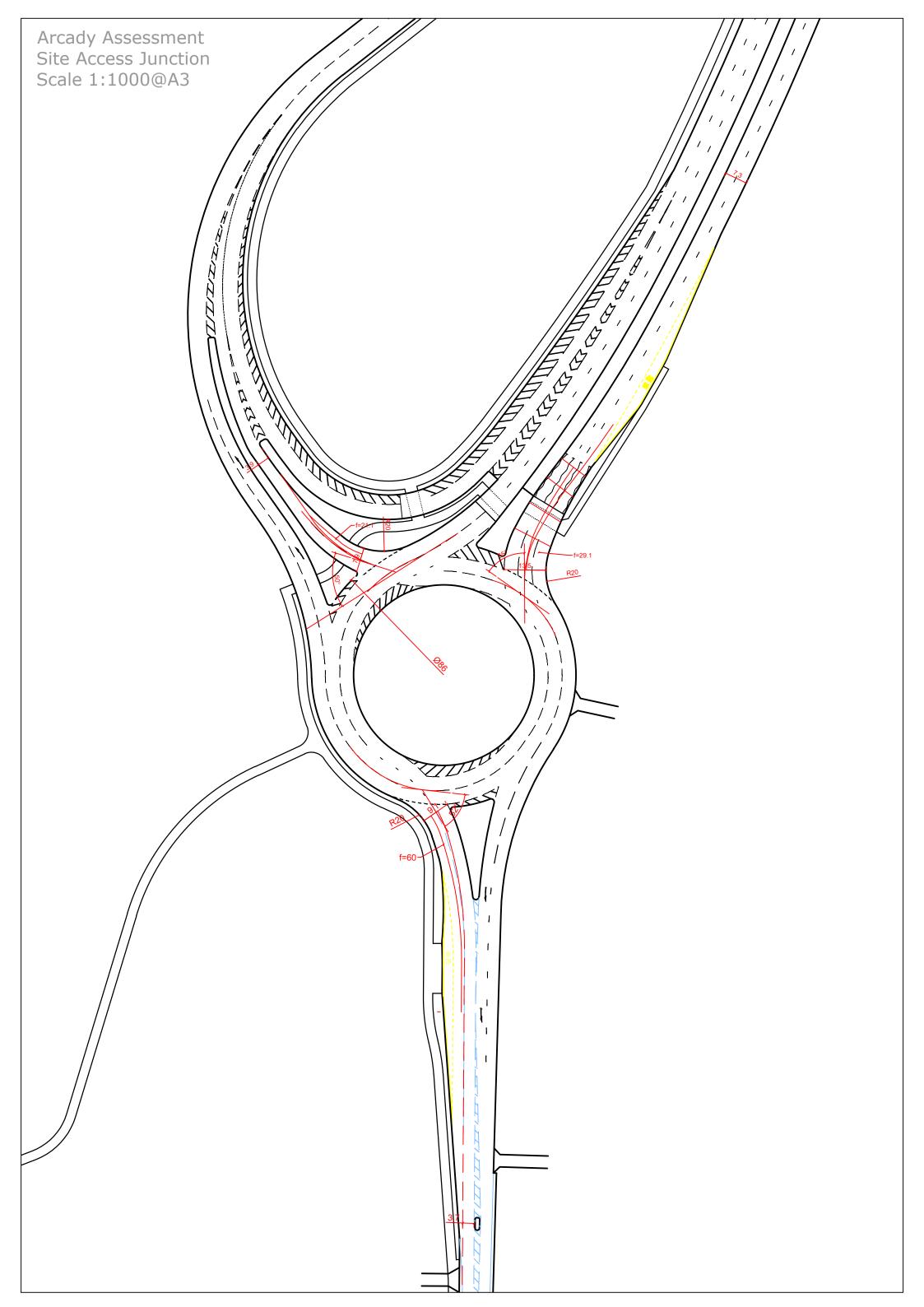
	MODELLED								
LGV To Arm									
A B C D E						F	G	TOTAL	
	Α	2	2	92	230	62			388
	В	0	0	0	0	1			1
Arm	С	82	1	0	3	0			86
	D	83	0	0	0	7			90
From	E	184	2	0	19	0			205
	F								
	G								
	TOTAL	351	5	92	252	70			770

				MODI	ELLED						
н	3V	To Arm									
110	J.	A	В	С	D	E	F	G	TOTAL		
	Α	0	0	247	296	305			848		
	В	0	0	4	0	0			4		
Ε	С	78	0	0	0	0			78		
Ā	D	174	0	0	17	164			355		
From Arm	E	357	0	0	67	0			424		
ᇤ	F										
	G										
	TOTAL	609	0	251	380	469			1709		

				MODE	ELLED				
Eis	Fixed To Arm								
11/	(Cu	Α	В	С	D	E	F	G	TOTAL
	Α								0
	В								0
ε	С								0
₹	D								0
From Arm	E								0
ᇤ	F								
	G								
	TOTAL	0	0	0	0	0			0

			20	31 Ref Ca	ase PM Pe	eak			
				MODE	LLED				
All M	ehicle					Arm			
All V	enicie	Α	В	С	D	E	F	G	TOTAL
	Α	24	302	843	1097	1129			3395
	В	0	0	94	53	143			290
	С	1196	27	0	74	0			1297
₹	D	1473	5	23	1	721			2223
From Arm	E	1258	83	0	406	0			1747
Œ	F								
	G								
	TOTAL	3951	417	960	1631	1993			8952

3y Vehicle	Type:									
				MODE	ELLED					
_	Car To Arm									
٠	,aı	Α	В	С	D	E	F	G	TOTAL	
	Α	24	256	597	940	938			2755	
	В	0	0	93	40	92			225	
ε	С	921	25	0	8	0			954	
Arm	D	1041	5	21	0	545			1612	
From	Е	923	31	0	303	0			1257	
	F									
	G									
	TOTAL	2909	317	711	1291	1575			6803	


				MODE	LLED				
LC					To	Arm			
L	3 V	Α	В	С	D	E	F	G	TOTAL
	Α	0	6	135	26	42			209
Arm	В	0	0	1	8	2			11
	С	172	0	0	1	0			173
	D	179	0	2	0	38			219
From	E	158	2	0	27	0			187
ŭ	F								
	G								
	TOTAL	509	8	138	62	82			799

				MODE	LLED			
Н	21/				To	Arm		
A B C D E F G TOTA							TOTAL	
	Α	0	40	111	131	149		431
	В	0	0	0	5	49		54
ε	С	103	2	0	65	0		170
Arm	D	253	0	0	1	138		392
From	E	177	50	0	76	0		303
	F							
	G							
	TOTAL	533	92	111	278	336		1350

				MODE	ELLED				
Eis	ked				To .	Arm			
11/	(cu	Α	В	С	D	E	F	G	TOTAL
	Α								0
	В								0
Ę	С								0
Ā	D								0
From Arm	E								0
正	F								
	G								
	TOTAL	0	0	0	0	0			0

APPENDIX (
AFOR site access ADCADY goometry and output
A508 site access ARCADY geometry and output

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.5.0.6896 © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL:

+44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: ADC3519 SRFI site acess_A508 - new NSTM.j9

Path: C:\Users\ADC\OneDrive - ADC Infrastructure Limited\ADC Projects\ADC3519 SLP- DCO amendment to mezzanine

space\Calculations\Modelling\ADC3519 site access Report generation date: 26/06/2025 14:28:52

»2031 - Updated NSTM Background, AM

»2031 - Updated NSTM Background, PM

»2031 - Updated NSTM +mez @50%, AM

»2031 - Updated NSTM +mez @50%, PM

»2031 - Updated NSTM +mez ITP, AM

»2031 - Updated NSTM +mez ITP, PM

»2031 - Updated NSTM sensitivity test, AM

»2031 - Updated NSTM sensitivity test, PM

Summary of junction performance

	АМ					PN	ı	
	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity
				2031 - Updated N	STM Backgr	ound		
Arm 1	4.3	6.61	0.80	22 %	1.6	3.36	0.59	29 %
Arm 2	1.3	5.05	0.55		2.6	6.73	0.71	
Arm 3	0.0	3.16	0.01	[Arm 1]	0.1	3.40	0.09	[Arm 2]
	2031 - Updated NSTM +mez @50%							
Arm 1	5.4	7.92	0.84	17 %	1.7	3.54	0.61	27 %
Arm 2	1.5	5.53	0.58	Г	2.7	7.15	0.72	
Arm 3	0.0	3.19	0.01	[Arm 1]	0.1	3.44	0.10	[Arm 2]
	2031 - Updated NSTM +mez ITP							
Arm 1	5.8	8.39	0.85	16 %	1.8	3.55	0.61	26 %
Arm 2	1.5	5.68	0.59		2.8	7.21	0.73	
Arm 3	0.0	3.20	0.01	[Arm 1]	0.1	3.43	0.09	[Arm 2]
	2031 - Updated NSTM sensitivity test							
Arm 1	6.9	9.88	0.87	12 %	1.9	3.73	0.63	24 %
Arm 2	1.6	6.10	0.61		2.9	7.61	0.74	
Arm 3	0.0	3.19	0.01	[Arm 1]	0.1	3.48	0.11	[Arm 2]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	ADC3519
Location	A508 site access
Site number	
Date	13/05/2024
Version	
Status	(new file)
Identifier	
Client	SEGRO
Jobnumber	ADC3519
Enumerator	ADC-TOSHIBA-AIO\ADC
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	Residual capacity criteria type	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
	✓	Delay	0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	Updated NSTM Background	AM	ONE HOUR	07:45	09:15	15
D2	Updated NSTM Background	PM	ONE HOUR	16:45	18:15	15
D3	Updated NSTM +mez @50%	AM	ONE HOUR	07:45	09:15	15
D4	Updated NSTM +mez @50%	PM	ONE HOUR	16:45	18:15	15
D5	Updated NSTM +mez ITP	AM	ONE HOUR	07:45	09:15	15
D6	Updated NSTM +mez ITP	PM	ONE HOUR	16:45	18:15	15
D7	Updated NSTM sensitivity test	AM	ONE HOUR	07:45	09:15	15
D8	Updated NSTM sensitivity test	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Name	Network flow scaling factor (%)
A1	2031	100.000

2

2031 - Updated NSTM Background, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

I	Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
Ī	1	A508 site access	Standard Roundabout		1, 2, 3	5.84	Α

Junction Network Options

ı	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
ı	Left	Normal/unknown	22	Arm 1

Arms

Arms

Arm	Name	Description
1	A508 north	
2	A508 south	
3	SRFI site access	

Roundabout Geometry

	•						
Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
1	7.30	13.50	29.1	20.0	86.0	55.0	
2	3.70	9.10	60.0	20.0	86.0	52.0	
3	3.90	7.90	21.1	20.0	86.0	50.0	

Bypass

Arm	Arm has bypass	Bypass utilisation (%)
1		
2		
3	✓	98

Pelican/Puffin Crossings

Arm	Space between crossing and junc. entry (Signalised) (PCU)	Amber time preceding red (s)	Amber time regarded as green (s)	Time from traffic red start to green man start (s)	Time period green man shown (s)	Clearance Period (s)	Traffic minimum green (s)
1	3.00	3.00	2.90	1.00	7.00	10.00	7.00

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

<u> </u>			
Arm	Final slope	Final intercept (PCU/hr)	
1	0.634	3040	
2	0.517	2209	
3	0.461	1802	

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	Updated NSTM Background	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	2184	100.000
2		✓	864	100.000
3		✓	376	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

		То		
		1	2	3
F	1	0	1323	861
From	2	798	0	66
	3	367	9	0

Vehicle Mix

Heavy Vehicle Percentages

	То			
		1	2	3
	1	0	4	15
From	2	6	0	27
	3	63	0	0

Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.80	6.61	4.3	Α
2	0.55	5.05	1.3	А
3	0.01	3.16	0.0	Α

2031 - Updated NSTM Background, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

I	Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
Ī	1	A508 site access	Standard Roundabout		1, 2, 3	4.45	Α

Junction Network Options

	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
ĺ	Left	Normal/unknown	29	Arm 2

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	Updated NSTM Background	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	1574	100.000
2		✓	1262	100.000
3		✓	1101	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

· · · · · · · · · · · · · · · · · · ·				
	То			
From		1	2	3
	1	0	1125	449
	2	1201	0	61
	3	1029	72	0

	То			
		1	2	3
From	1	0	5	35
	2	4	0	55
	3	15	0	0

Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.59	3.36	1.6	Α
2	0.71	6.73	2.6	А
3	0.09	3.40	0.1	Α

2031 - Updated NSTM +mez @50%, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
1	A508 site access	Standard Roundabout		1, 2, 3	6.79	Α

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	17	Arm 1

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	Updated NSTM +mez @50%	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	2272	100.000
2		✓	878	100.000
3		✓	410	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

	•		,	
	То			
		1	2	3
	1	0	1323	949
From	2	798	0	80
	3	401	9	0

	То			
		1	2	3
F	1	0	4	15
From	2	6	0	26
	3	63	0	0

Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.84	7.92	5.4	Α
2	0.58	5.53	1.5	А
3	0.01	3.19	0.0	Α

2031 - Updated NSTM +mez @50%, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

I	Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
Ī	1	A508 site access	Standard Roundabout		1, 2, 3	4.63	Α

Junction Network Options

Driving	g side	Lighting	Network residual capacity (%)	First arm reaching threshold
Le	eft	Normal/unknown	27	Arm 2

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	Updated NSTM +mez @50%	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)	
HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	1618	100.000
2		✓	1269	100.000
3		✓	1207	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

		То			
		1	2	3	
From	1	0	1125	493	
	2	1201	0	68	
	3	1123	84	0	

	То			
From		1	2	3
	1	0	5	35
	2	4	0	52
	3	15	0	0

Results

Arm	Max RFC Max Delay (s) Max Queue (PCU)		Max LOS	
1	0.61	3.54	1.7	Α
2	0.72	7.15	2.7	А
3	0.10	3.44	0.1	Α

2031 - Updated NSTM +mez ITP, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

I	Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
Ī	1	A508 site access	Standard Roundabout		1, 2, 3	7.12	Α

Junction Network Options

ı	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
ı	Left	Normal/unknown	16	Arm 1

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	Updated NSTM +mez ITP	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	2297	100.000
2		✓	882	100.000
3		✓	421	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

	,			
	То			
		1	2	3
From	1	0	1323	974
	2	798	0	84
	3	412	9	0

	То			
From		1	2	3
	1	0	4	15
	2	6	0	26
	3	63	0	0

Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.85	8.39	5.8	Α
2	0.59	5.68	1.5	А
3	0.01	3.20	0.0	Α

2031 - Updated NSTM +mez ITP, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
1	A508 site access	Standard Roundabout		1, 2, 3	4.65	Α

Junction Network Options

ı	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
ı	Left	Normal/unknown	26	Arm 2

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	Updated NSTM +mez ITP	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	1625	100.000
2		✓	1269	100.000
3		✓	1197	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

· , ,				
	То			
		1	2	3
	1	0	1125	500
From	2	1201	0	68
	3	1117	80	0

	То			
		1	2	3
F	1	0	5	35
From	2	4	0	52
3		15	0	0

Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.61	3.55	1.8	Α
2	0.73	7.21	2.8	А
3	0.09	3.43	0.1	Α

2031 - Updated NSTM sensitivity test, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

I	Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
Ī	1	A508 site access	Standard Roundabout		1, 2, 3	8.16	Α

Junction Network Options

ı	Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
ı	Left	Normal/unknown	12	Arm 1

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	Updated NSTM sensitivity test	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)	
HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	2361	100.000
2		✓	891	100.000
3		✓	446	100.000

Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

			То		
		1	2	3	
	1	0	1323	1038	
From	2	798	0	93	
	3	436	10	0	

		T	о	
		1	2	3
F	1	0	4	15
From	2	6	0	26
	3	63	0	0

Results

Arm	m Max RFC Max Delay (s) N		Max Queue (PCU)	Max LOS	
1	0.87	9.88	6.9	А	
2	0.61	6.10	1.6	А	
3	0.01	3.19	0.0	Α	

2031 - Updated NSTM sensitivity test, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 2 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
1	A508 site access	Standard Roundabout		1, 2, 3	4.82	Α

Junction Network Options

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold
Left	Normal/unknown	24	Arm 2

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	Updated NSTM sensitivity test	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	1661	100.000
2		✓	1275	100.000
3		✓	1313	100.000

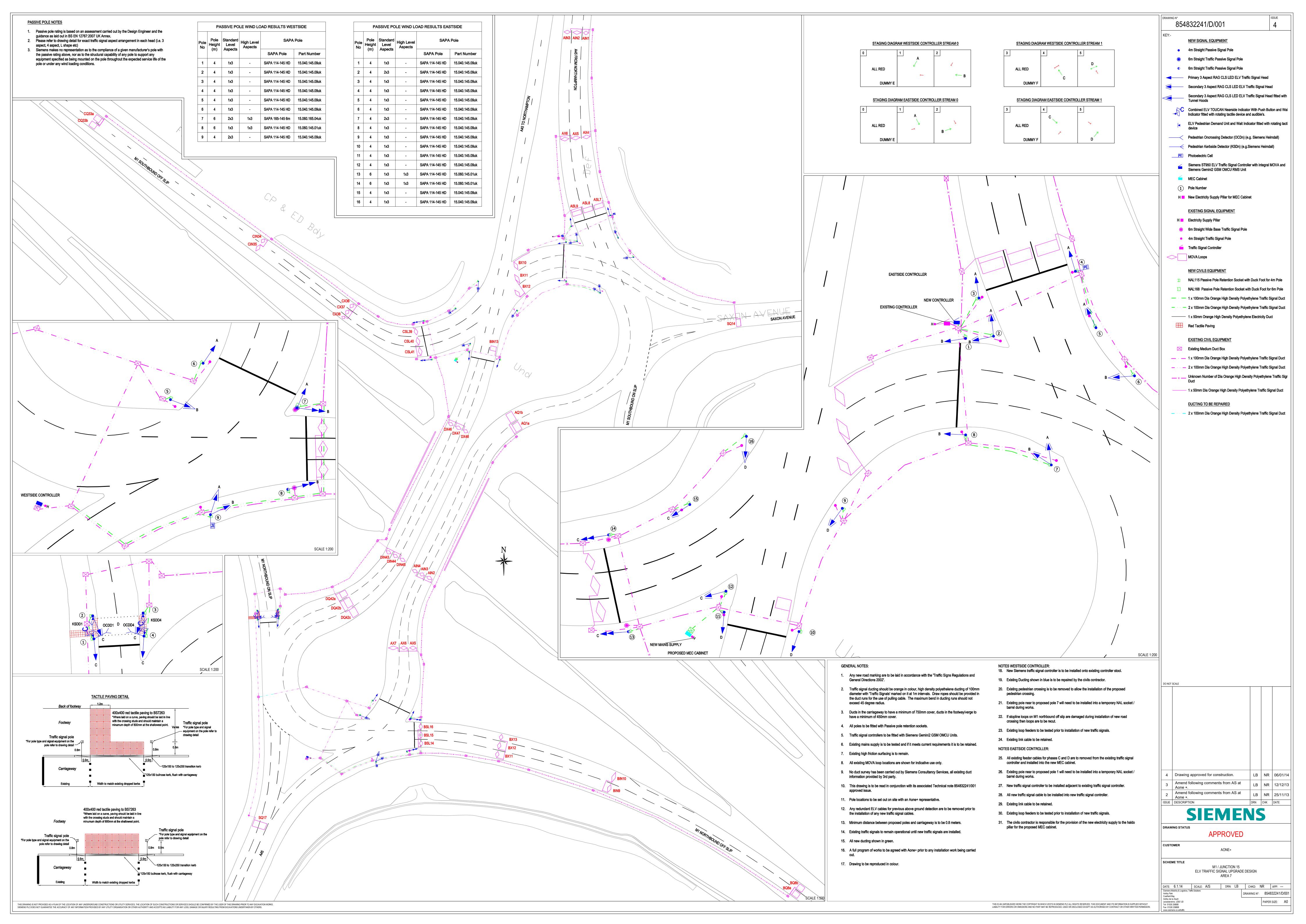
Demand overview (Pedestrians)

Arm	Average pedestrian flow (Ped/hr)
1	10.00
2	
3	

Origin-Destination Data

Demand (PCU/hr)

		То					
		1	2	3			
	1	0	1125	536			
From	2	1201	0	74			
	3	1218	95	0			


		Т	o	
		1	2	3
F	1	0	5	35
From	2	4	0	52
	3	15	0	0

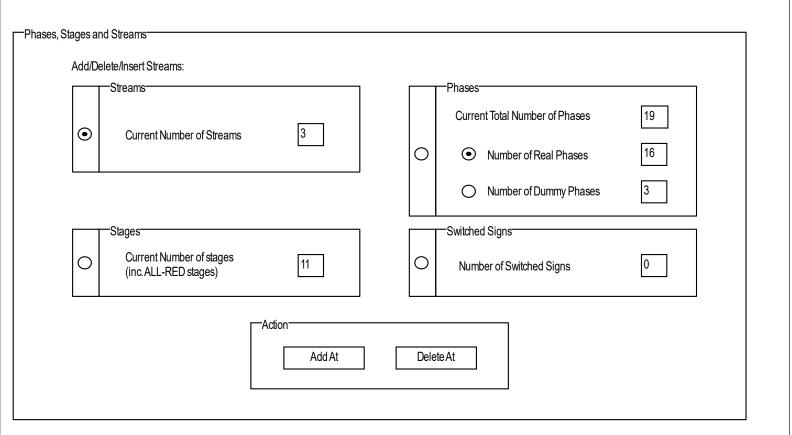
Results

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.63	3.73	1.9	Α
2	0.74	7.61	2.9	А
3	0.11	3.48	0.1	Α

APPENDIX D
M1 Junction 15 as-built information

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Administration

General Specifications									
Customer Name	National Highways - Area 7	Customer Order No.	857993755						
Intersection/ General Description	"""" INTEGRAL OF THE PROPERTY		7100						
		S.T.S. /EM Number	NN0014 Issue 4						
Controller	New	Equipment Installation by	Yunex Traffic						
Area Specifications/ Customer Drawings		Slot Cutting by							
Specification Section		Civil Works by							
Contract/Tender Ref:		Customer's Engineer							
Quotation No.		Telephone Number							
Works Order No.	857993755	,							
Signal Company Use Only Signal Engineer (Yunex Traffic) (IF PROM Label as >) PROM Number 16260 PROM Variant 14 Configuration Check Value EF D 11 30 Controller Options Hardware ST950 ELV Firmware Type and Issue 46059 ISS 26 Other Options									
ST950/ST900/ST750 Serie	es Cabinet Options Cabinet Kit Type Option	ons • UK-Std •	Non-UK O						
Cabinet/Rack Variant	Grey Cuckoo Opt		Gemini Unit Fitted						
Mains Supply	230 Volts 50 Hz Dimming	27.5 V	Answer Issue 0						
Peak Lamp Current Average Lamp Power	1 Amps Low Inrush Transforme	IV I	Edit Issue 13						
Total Average Power	230 Watts		Date Created 07/06/2022						
Power feed fuse rating: requ	ires 30 Amp minimum for controller, 15 Amp minimu	um for pelican/lightly loaded co	ntroller						

Engineer : (Yunex Traffic)

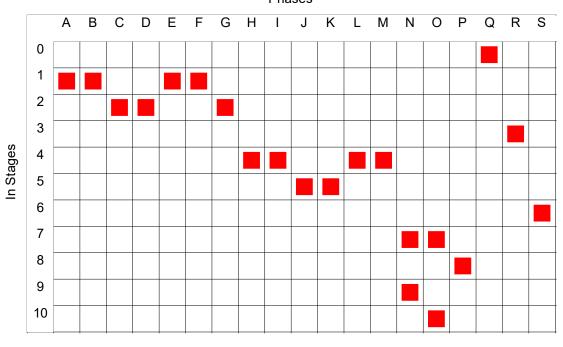
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phases, Stages and Streams

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

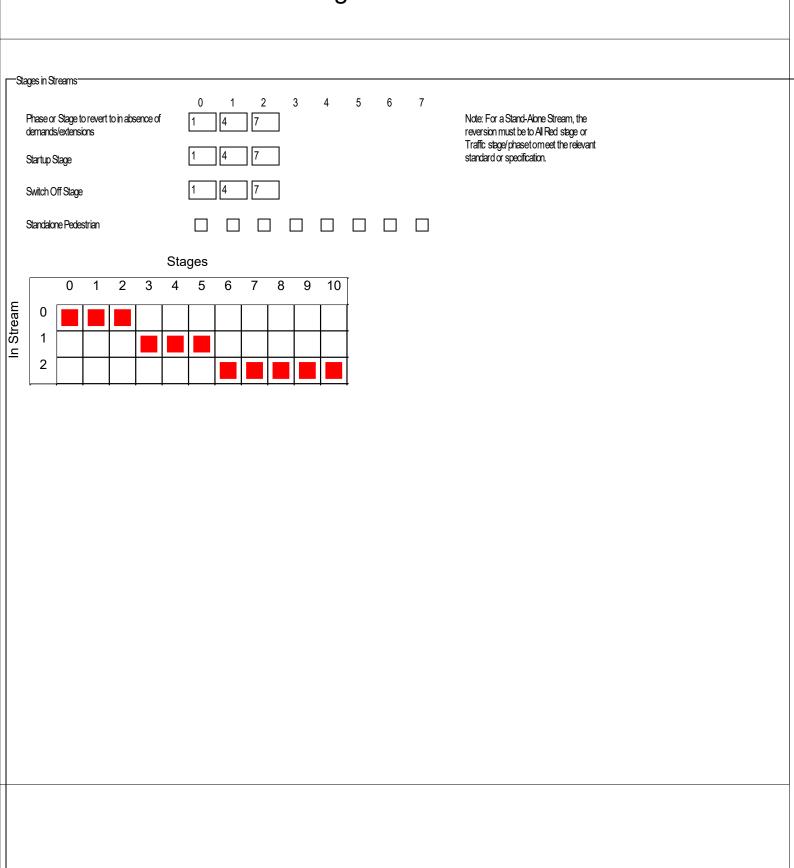
Facilities/Modes Enabled and Mode Priority Levels


Facilities UTC Serial/Internal UTMC OTU Free-standing OTU Starting Intergreen	✓ Master Time Clock ☐ Holiday Clock ✓ FT To Current MAX ☐ Linked Fixed Time	 ✓ Lamp Monitoring ✓ RED Lamp Monitoring ✓ Pelican/Puffin/Toucan ☐ Standalone Manual 	ExtendAll Red Speed Measurement Ripple Change DVI35	Non-UKFail to Part Time□□Download To Level 3
Mode Priority Part Time Emergency Vehides Hurry Call LRT Priority Vehide Manual Control Manual Step On Selected FT or VA or CLF UTC MOVA Mode CLF (Non-Base Time) CLF (Base Time) Vehide Actuated Fixed Time	1 2 3 4 5 6 7 O O O O O O O O O O O O O O O O O O	8 9 10 11 12 13 0	Configuration Complexity Low Me standard46059.8df Correspondence Monit Reds Switched Signs Flash Rate (n	✓ Ambers

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phases in Stages



Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Stages in Streams

Works Order : 857993755 : NN0014 **EM Number**

Engineer (Yunex Traffic)

: M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Phase Type and Conditions

	Type and Conditions • Phases Ato P	Phases Q to F2	Improved GAA	Appearan	nce] Manual (Output Alloca	ation	abla	
hase	Title	Туре		∖pp. Type	Term. Type	Assoc. Phase	No. of D	rive Outputs "A"	"G"	H/W Fail Flash	Critical Phase
A	GYRATORY X M1 SOUTHBOUND OFF SLIP	0 - UK Traffic	0)	0 - Б		1	1	1]	
3	GYRATORY X M1 SOUTHBOUND OFF SLIP RIGHT	0 - UK Traffic	0)	0 - Ei		1	1	1	1	
2	M1 SOUTHBOUND OFF SLIPAHEAD	0-UKTraffic	0		0 - Б		1	1	1	1	
)	M1 SOUTHBOUND OFF SLIP LEFT	0 - UK Traffic	0)	0 - Б		1	1	1	ĺ	
	PED X M1 SOUTHBOUND OFF SLIPAHEAD	3 - UK Near Side Pedestrian	0		0 - E		1	1	2]	
	PED XM1 SOUTHBOUND OFF SLIP LEFT	3 - UK Near Side Pedestrian	0		0 - Б		1	1	2		
3	PED X GYRATORY	3 - UK Near Side Pedestrian			0 - Б		1	1	2	ĺ	
1	GYRATORY RIGHT XA45 LONDON ROAD	0-UKTraffic	0)	0 - Б		1	1	1	Ī	
	GYRATORYAHEAD X A45 LONDON ROAD	0 - UK Traffic	0)	0 - Б		1	1	1		
	A45 LONDON ROAD AHEAD	0 - UK Traffic	0)	0 - Б		1	1	1		
(A45 LONDON ROAD LEFT	0 - UK Traffic	0		0 - Б		1	1	1	1	
	PED X A45 LONDON ROAD AHEAD	3 - UK Near Side Pedestrian	0)	0 - Б		1	1	2	Ī	
M	PED X.A45 LONDON ROAD LEFT	3 - UK Near Side Pedestrian	0)	0 - Б		1	1	2		
١	GYRATORYAHEAD X SAXON AVENUE	0-UKTraffic	0)	0 - Б		1	1	1		
)	GYRATORY LEFT X SAXON AVENUE	0 - UK Traffic	0)	0 - Б		1	1	1		
)	SAXON AVENUE	0-UKTraffic	0)	0 - Ei		1	1	1	ĺ	

¹⁾ App Types: 0 = Always Appears, 1 = Appears if dem'd prior to interstage, 2 = If dem'd, 3 = If dem'd before end of window time
2) Term Types: 0 = Term's at end of stage, 1 = Term's when Assoc phase gains R.O.W, 2 = Term's when Assoc phase loses R.O.W.
3) The HW Fail Flash fields are for information only on all but ST900 ELV and ST950 ELV Controllers. For other controllers, physical switches or links (etc.), select which aspects flash; these need to be set up manually.

Works Order : 857993755 : NN0014 **EM Number**

Engineer (Yunex Traffic)

: M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Phase Type and Conditions

Phase Type and Conditions						
,	O Phases Ato P	Phases Q to F2	Improved GAAppearance	Manual Output Allocation	abla	
Phase Title Q STREAM 0 ALL RED DUMMY PHA R STREAM 1 ALL RED DUMMY PHA S STREAM 2 ALL RED DUMMY PHA	ASE	Type 2- UK GreenArrow 2- UK GreenArrow 2- UK GreenArrow	App. Term. Type 0 0 - E 0 0 - E		HW Fail Flash	Critical Phase

¹⁾ AppTypes: 0 = Always Appears, 1 = Appears if dem'd prior to interstage, 2 = If dem'd, 3 = If dem'd before end of window time
2) Term Types: 0 = Term's at end of stage, 1 = Term's when Assoc phase gains R.O.W, 2 = Term's when Assoc phase loses R.O.W.
3) The HW Fail Flash fields are for information only on all but ST900 ELV and ST950 ELV Controllers. For other controllers, physical switches or links (etc.), select which aspects flash; these need to be set up manually.

Engineer : (Yunex Traffic)

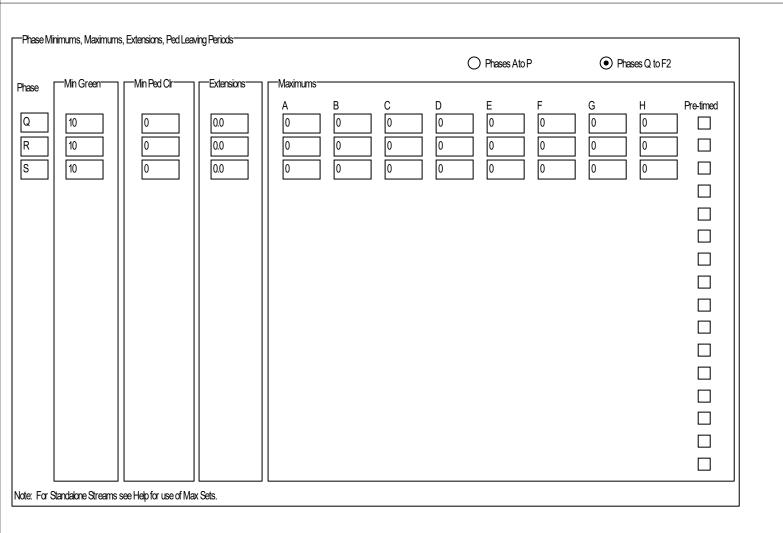
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Opposing and Conflicting Phases

	0	Al	0)	<u>O</u> 1	() 2)	0	1	0		0	(0		Initia	ise	
	∠ Am	ber Cor	nflict Mor	nitoring																
										To P										
		Α	В	С	D	Е	F	G	Н	I	J	K	L	M	Ν	0	Р	Q	R	S
	Α		0	Со	Со	0	0	Со										0		
	В	0		Со	0	0	0	0										0		
	С	Со	Со		0	Со	0	0										0		
	D	Со	0	0		0	Со	0										0		
	Ε	0	0	Со	0		0	0										0		
	F	0	0	0	Со	0		0										0		
	G	Со	0	0	0	0	0											0		
1)	Н									0	Со	0	0	0					0	
nas	I								0		Со	Со	0	0					0	
From Pnase	J								Со	Со		0	Со	0					0	
Ĺ	K								0	Со	0		0	Со					0	
	L								0	0	Со	0		0					0	
	М								0	0	0	Со	0						0	
	N															0	Со			0
	0														0		Со			0
	Р														Со	Со				0
	Q	0	0	0	0	0	0	0												
	R								0	0	0	0	0	0						

Engineer : (Yunex Traffic)

ntersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Phase Minimums, Maximums, Extensions, Ped Leaving Periods

—Phase Mi	inimums, Maximums	s, Extensions, Ped Lea	ving Periods								
							Phases Ato	Р	○ Pha	ses Q to F2	
Phase	Min Green	Min Ped Cir	Extensions—	Maximums——							
				A B	С	D	Е	F	G	Н	Pre-timed
Α	7	0	0.0	45	48	48	0	0	0	0	
В	7	0	0.0	45	48	48	0	0	0	0	
С	7	0	0.0	20	20 18	18	0	0	0	0	
D	7	0	0.0	20 2	20 18	18	0	0	0	0	
E	5	3	0.0	0		0	0	0	0	0	
F	5	3	0.0					0	0	0	
G	7	3	0.0					0	0	0	\Box
Н	7	0	0.0		34 28	28		0	0	0	
	7	0	0.0		34 28	28		0	0	0	
J	7	0	0.0		32 38	38		0	0	0	
K	7	0	0.0		32 38	38		0		0	
						╡] [
L	5	3	0.0	0		0	0	0	0	0	
М	5	3	0.0	0 (0	0	0	0	0	0	
N	7	0	0.0	58	58 57	57	0	0	0	0	
0	7	0	0.0	58	58 57	57		0	0	0	
Р	7	0	0.0	9 !	9 10	10	0	0	0	0	
Note: For S	Standalone Streams	see Help for use of Ma	x Sets.								

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase Minimums, Maximums, Extensions, Ped Leaving Periods

From Phase

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase Intergreen Times

Select Street	am(s) To Conf	igure ———						
○ AI	O 0	O 1	O 2	0	0	0	0	0

Note: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PIT, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below.

To Phase

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S
Α			5	7			8										3		
В			5														3		
С	9	9			7												3		
D	9					7											3		
Е			5														3		
F				5													3		
G	5																3		
Н										5								3	
I										5	6							3	
J								9	8			7						3	
K									7				7					3	
L										5								3	
М											5							3	
N																5			5
0																6			6
Р														10	7				3
Q	2	2	2	2	2	2	2												
R								2	2	2	2	2	2						
S														2	2	2			
			-			-													

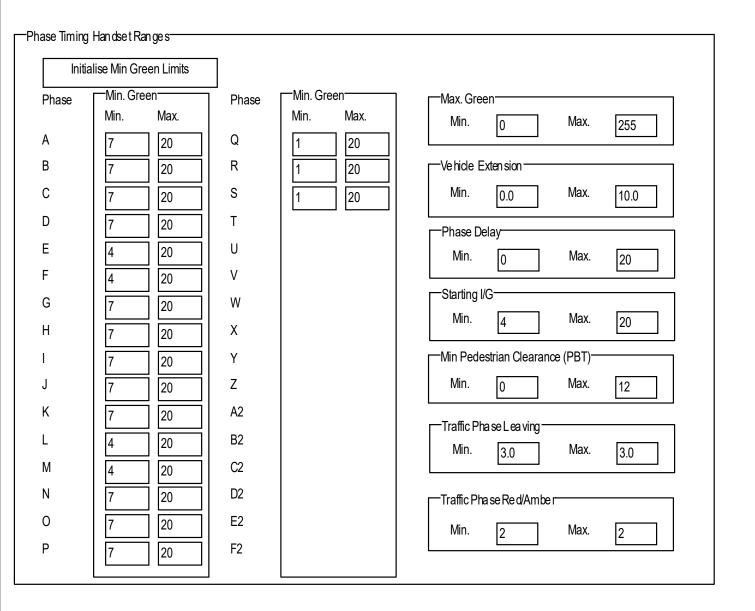
From Phase

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Intergreen Handset Limits

HIGH 30 Copy Intergreen \alues


To Phase

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S
Α			5	6			7										3		
В			5														3		
С	7	8			6												3		
D	6					6											3		
Е																	3		
F																	3		
G																	3		
Н										5								3	
I										5	5							3	
J								8	7			6						3	
K									6				6					3	
L																		3	
М																		3	
N																5			3
0																5			3
Р														9	6				3
Q	2	2	2	2	2	2	2												
R								2	2	2	2	2	2						
S														2	2	2			

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase Timing Handset Ranges

Engineer : (Yunex Traffic)

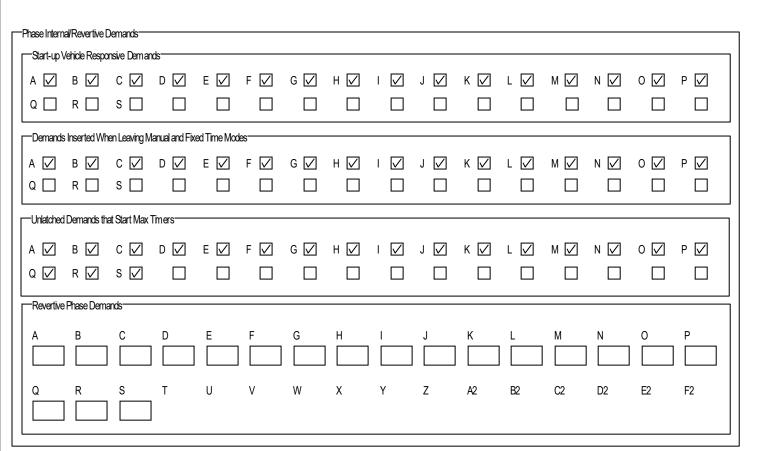
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

VA Demand and Extend Definitions

Demands					Phases Ato P	○ Pl	hases Q to F2
For Unlatched d Conditioning MU	emands precede the na IST be used to specify u	me with a #. nlatched demands.		Extensions —			
AX1	AX2	AX3		AX1	AX2	AX3	
BX4				BX4			
CX13	CX14	CX15	CSL19	CX13	CX14	CX15	CSL19
DX10	DX11	DX12	DSL16	DX10	DX11	DX12	DSL16
EPBU126	EPBU128	EPBU127	EPBU129				
FPBU118	FPBU120	FPBU119	FPBU121				
GPBU122	GPBU116	GPBU123	GPBU124				
JX8	JX9	JX10	JSL13	JX8	JX9	JX10	JSL13
KX6	KX7	KSL11	KSL12	KX6	KX7	KSL11	KSL12
LPBU101	LPBU103	LPBU102	LPBU104				
MPBU105	MPBU107	MPBU106	MPBU108				
PX2	PX3	PSL4	PSL5	PX2	PX3	PSL4	PSL5

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


VA Demand and Extend Definitions

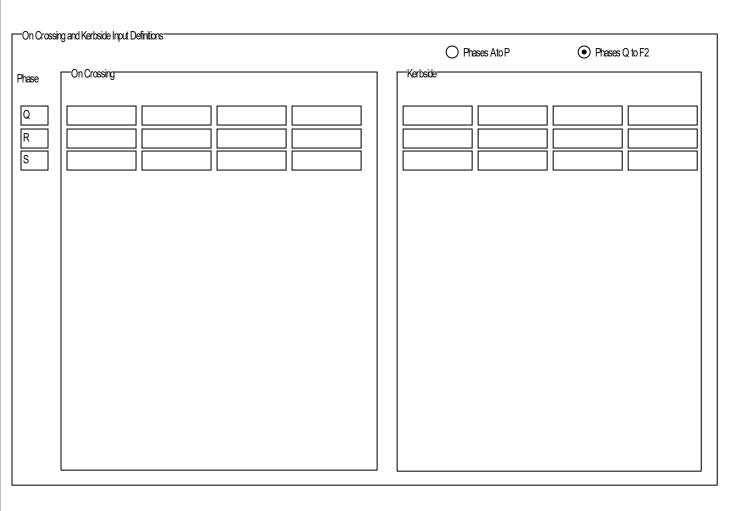
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase Internal/Revertive Demands

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Phase - On Crossing and Kerbside Detector Definitions

sing and Kerbside Inp		Phases Ato P	Phases Q to F2
On Crossing		Kerbside	
EOCD126	EOCD129		
FOCD120	FOCD119		
GOCD122	GOCD123		
LOCD103	LOCD102		
MOCD107	MOCD106		
			i i i i i i i i i i i i i i i i i i i

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase - On Crossing and Kerbside Detector Definitions

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Stream - Pelican/Puffin/Toucan Times

Pedestrian Enable VA Mode (PEV)				Stream	ne							
0 1		2	3	Olodi	110	4		5		6		7
Pedestrian All Red Times (Vehicle to Pe	destrian)——										Handset Rar	nge Limits
Streams			0	1	2	3	4	5	6	7	Min	Max
(PAR n 0) VA Gap Change												
(PAR n 1) VA Max Change												
(PAR n.2) FVP Change											0	0
(PAR n 3) UTC Change												
(PAR n.4) Local Link Change												
Pelican Intergreen times												
(PIT n 0) Veh Red/Ped Flash Green											0	0
(PIT n 1) Veh Flash Amber/Ped Flash C	Green										0	0
(PIT n 2) Veh Flash Amber/Ped red											0	0
(PIT n 3) Veh Flash Amber/Ped Red Qu	uiescent										0	0

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase - Pelican, Puffin and Toucan Times

Phase-I	Pelican, Puffin and T	oucan Times						
Phase	PDD Ped Demand Delay	PDX Ped Demand Hold	CMX Clearance Maximum	CDY 0 Clearance Delay Gap Change	CDY 1 Clearance Delay Max Change	CRD Clearance Minimum Red	Phases Ato P	○ Phases Q to F2
Α	0	0.0	0	0	0	0		
В	0	0.0	0	0	0	0	П	
С	0	0.0	0	0	0	0		
D	0	0.0	0	0	0	0	П	
E	0	0.0	10	0	0	0		
F	0	0.0	11	0	0	0		
G	0	0.0	10	0	0	0		
Н	0	0.0	0	0	0	0	Pedestrian Handset Range Limits	
I	0	0.0	0	0	0	0		MIN MAX
J	0	0.0	0	0	0	0	Demand Delay PDD	0 5
K	0	0.0	0	0	0	0	Demand Hold PDX	0.0 5.0
L	0	0.0	10	0	0	0		
М	0	0.0	6	0	0	0	Clearance Maximum CMX	0 30
N	0	0.0	0	0	0	0	Clearance Delays CDY 0 and CDY1	0 5
0	0	0.0	0	0	0	0		0 5
Р	0	0.0	0	0	0	0	Clearance Minimum Red CRD	
	<u> </u>							

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Phase - Pelican, Puffin and Toucan Times

—Phase-P	elican, Puffin and To	oucan Times						
Phase	PDD Ped Demand Delay	PDX Ped Demand Hold	CMX Clearance Maximum	CDY 0 Clearance Delay Gap Change	CDY 1 Clearance Delay Max Change	CRD Clearance Minimum Red	O Phases Ato P	Phases Q to F2
Q	0	0.0	0	0	0	0		
R S	0	0.0	0	0	0	0		
						[Pedestrian Handset Range Limits	
								MIN MAX
							Demand Delay PDD	0 5
							Demand Hold PDX	0.0 5.0
							Clearance Maximum CMX	0 30
							Clearance Delays CDY 0 and CDY1	0 5
							Clearance Minimum Red CRD	0 5
						ı		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

IO and Link - Pelican/Puffin/Toucan Times

Streams	0	1	2	3	4	5	6	7
Computer Control		<u> </u>			<u> </u>			· · · · · · · · · · · · · · · · · · ·
PV								
Window Time UIE								
Local Link								
PV1								
Link Delay Time LKD								
Link Window Time LKW								
Link Override Time LKO								
Kerbside Mat Test Output								

Engineer : (Yunex Traffic)

ntersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Pelican, Puffin, Toucan Pushbutton/Kerbside Associations

Pelican, Puffin, Toucan Pushbutton/Kerbside Associations			
Phase Demand KBS	Phase Demand KBS	Phase Demand KBS	Phase Demand KBS
0 D	16	32 32	48
	17	33	49
2	18	34	50
3	19	35	51
4	20	36	52
5	21	37	53
6	22	38	54
7	23	39	55
8	24	40	56
9	25	41	57
10	26	42	58
11	27	43	59
12	28	44	60
13	29	45	61
14	30	46	62
15	31	47	63
		Note: Anya ssocia tion pushed of the screen will have	e any previous association blanked.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Stage Internal Demands/Pedestrian Window Times

-Stage Internal Demands/Pedestrian Window	v Times				
Start-up Vehicle Responsive Demands					
0	3	5	7	10 🗆 🗎	
Demands Inserted When Leaving Manua	al and Fixed Time Modes	3			
0	3	5	7	10	
Unlatched Demands that Start Maximum	n Timers				
0 🗸 1 🗸 2 🗸	3 🗸 4 🗸	5 🕢 6 🗸	7	10 🗸 🗌 🖂	
0 1 2 3	0 0			10 11 12 13	14 15
16 17 18 19	9 20	21 22	23 24 25 2	26 27 28 29	30 31
Exceptional Stages					
0	3	5	7	10	

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Fixed Time

Fixed Time Stage Moves & Times	(Not Fixed Ti	me to Curre	nt Max)							 						
Current Stage Next Stage Time	0 1 0	1 2 45	2 1 20	3 4 0	4 5 34	5 4 32	6 7 0	7 8 58		the S	Time mod	e may be us and Times xed Time is	section sho	ould always	te, therefore, be configured	d
Current Stage Next Stage Time	8 9 10	9 10 7	10 8 7	11]	12	13	14	15								
Current Stage Next Stage	16	17	18	19	20	21	22	23								
Time																
Current Stage Next Stage	24	25	26	27	28	29	30	31								
Tme																
Phases Demanded ar	nd Extended un	nder Fixed Ti	imetoCurrent	Max.					•							\neg
Demand Extend	A	abla			F \begin{align*} \begin{align*} \be	G	H 🗆	I V Y	J ☑ ☑	K	L	M 🖂	N V	o 	P	
Demand Extend		R			V 	W	х П	Y		A2	B2	C2	D2		F2	

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

F - Plan(s)	Group/Infli	uence							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
lan Specifics	0	14	1	1	16				1 - Immediate Move
Influence Set	2	60 55	1	4	17 18				2 - Demand
Copy From	3	19	1	5	19				Dependent Move 3 - Hold
ntry Point 255	4 5	1 63	2	7 8	20 21				4 - Prevent Except
ecs) xit Point 255	6	64	3		22				To 5- Add Immediate
ycle Time 80	7 8				23 24				Move
Smooth CLF	9				2 4 25				6 - Add Demand Dependent Move
Slow 0	10				26				7 - Ignore
Fast 0	11 12				27 28				8 - Stand Alone Inhibited
roup Offset andset Range	13				29				9 - Stand Alone Ped Alowed
in. 0	14 15				30 31				
ax. 255	l 10				31				

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

F - Plan(s)	Group/Infli	uence							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
lan Specifics	0	14	1	1	16				1 - Immediate Move
Influence Set	2	60 55	1	4	17 18				2 - Demand
Copy From	3	19	1	5	19				Dependent Move 3 - Hold
ntry Point 255	4 5	1 63	2	7 8	20 21				4 - Prevent Except
ecs) xit Point 255	6	64	3		22				To 5- Add Immediate
ycle Time 80	7 8				23 24				Move
Smooth CLF	9				2 4 25				6 - Add Demand Dependent Move
Slow 0	10				26				7 - Ignore
Fast 0	11 12				27 28				8 - Stand Alone Inhibited
roup Offset andset Range	13				29				9 - Stand Alone Ped Alowed
in. 0	14 15				30 31				
ax. 255	l 10				31				

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

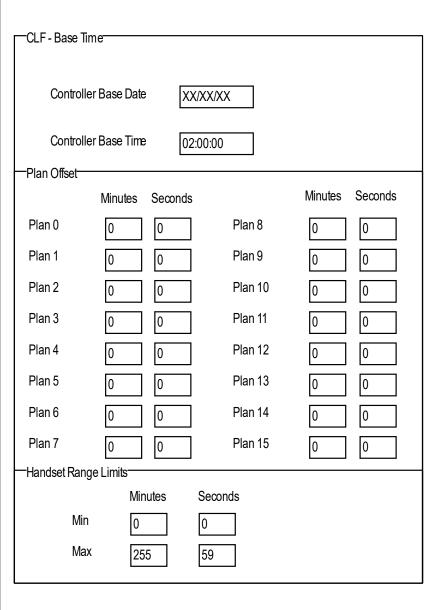
	Group/Infl	uence							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
Specifics	0	14	1	1	16				1 - Immediate Move
Influence Set	1	60	1	2	17				
Initialization Set	2	55	1	4	18				2 - Demand Dependent Move
opy From	3	19	1	5	19				3- Hold
try Point 755	4	1	1	7	20				
ry Point 255 cs)	5	63	2	8	21				4 - Prevent Except To
t Point 255	6	64	3		22				5 - Add Immediate
ccs)	7				23				Move
cs)	8				24				6 - Add Demand
Smooth CLF	9				25				Dependent Move
Slow 0	10				26				7 - Ignore
Fast 0	11				27				8 - Stand Alone
	12				28				Inhibited
oup Offset ndset Range	13				29				9 - Stand Alone Ped Alowed
. 0	14				30				Fed Alowed
(255	15				31				

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Plan No	Group/Influ	uence							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
an Specifics	0	14	1	1	16				1 - Immediate Move
Influence Set	2	60 55	1	4	17 18				2 - Demand
Copy From	3	19	1	5	19				Dependent Move 3 - Hold
try Point 255	4 5	63	1	7	20 21				4 - Prevent Except
it Point 255	6	64	3	8	22				To
ecs) vde Time	7				23				5 - Add Immediate Move
ocs) Smooth CLF	8				24 25				6 - Add Demand Dependent Move
Slow 0	10				26				7-Ignore
Fast 0	11 12				27 28				8 - Stand Alone Inhibited
oup Offset ndset Range	13				28 29				9 - Stand Alone Ped Alowed
0	14				30				Feu Alowed
ax. 255	15				31				

Engineer


(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

- Plan(s)	Group/Infl	uence							CLF Influences
Plan No.	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
Copy From an Specifics	0	14	1	1	16				1 - Immediate Move
Influence Set		69	1	2	17				
	2	50	1	4	18				2 - Demand Dependent Move
Copy From	3	19	1	5	19 20				3-Hold
ntry Point 255	5	69 36	1	9 10	20 21				4 - Prevent Except
ecs) 255	6	54	2	8	22				То
ecs)	7	56	3		23				5 - Add Immediate Move
ecs)	8				24				6- Add Demand
Smooth CLF	9				25				Dependent Move
Slow 0	10				26				7 - Ignore
Fast 0	11				27				8 - Stand Alone Inhibited
roup Offset	12				28				9 - Stand Alone
andset Range	13				29 30				Ped Alowed
in. 0	15				31				
ax. 255	13				JI				

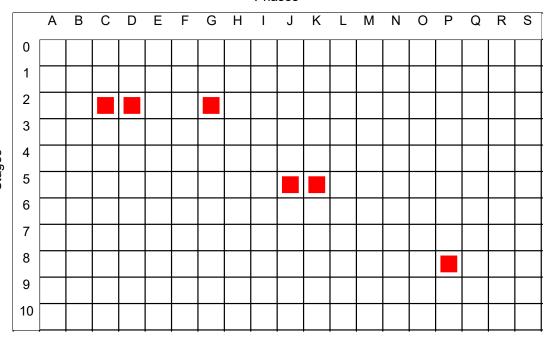
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

CLF - Base Time

Engineer : (Yunex Traffic)

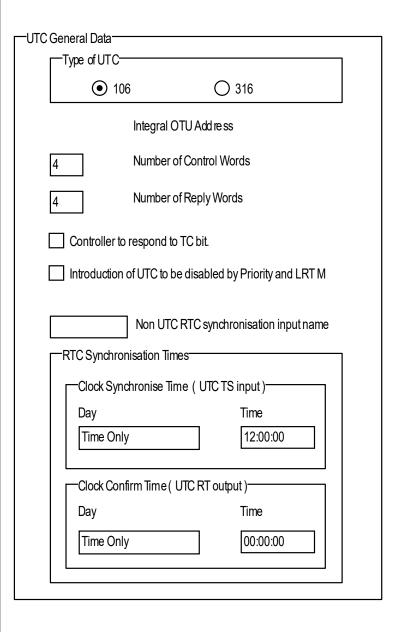
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


CLF - Demand Dependent Moves

Clear Grid Data

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.


Phases

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

UTC General Data

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

UTC Control and Reply Data Format

Control Words	Bit 1	Bit 2	Bit 3	<u>Bit 4</u>	Bit 5	Bit 6	Bit 7	Bit 8
Word 1	1F1	#1F2	1D2	1DX				
Word2				1MO				SO
Word3	TS	2F4	#2F5	2D5	2DX	2MO		
Word4	3F7	#3F8	3F9	3F10	3D8	3DX	3МО	
Reply Words								
Word 1	1G1	1G2	1DR2	DF	RR	LF1	LF2	LF3
Word2	CF	LO	MC	1MR	1ML	1MF	1HC	SB
Word3	CC	2G4	2G5	2DR5	2HC	2MR	2ML	2MF
Word 4	3G7	3G8	3G9	3G10	3DR8	3HC	3MR	3ML
Word 5								
Word 6								
Word 7								
Word 8								
Word 9								
Word 10								
Word 11								
Word 12								
Word 13								

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

UTC Phase Demand and Extend Definitions

—De	mands			1 •) Phases Ato P	Phases Q to F2	
For I	Unlatched demands ditioning MUST be	s, preceed the name used to specify unlat	with a #. ched demands.	Extensions—			
1D)	X			1DX			
1D)	X			1DX			
1D)	X	1D2		1DX	1D2		
1D)	X	1D2		1DX	1D2		
1D)	X						
1D)	×						
1D)	X	1D2					
2D)	X			2DX			
2D)	X			2DX			
2D)	Κ	2D5		2DX	2D5		
2D)	X	2D5		2DX	2D5		
2D)	X						
2D)	Κ						
3D)	Κ			3DX			
3D)	X			3DX			
3D)	<u> </u>	3D8		3DX	3D8		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

UTC Phase Demand and Extend Definitions

UTC Dema	and and Extend Definitions	
	Demands	○ Phases Ato P ● Phases Q to F2
Phase	For Unlatched demands, preceed the name with a #. Conditioning MUST be used to specify unlatched demands.	Extensions -
Q		
R S		

Engineer : (Yunex Traffic)

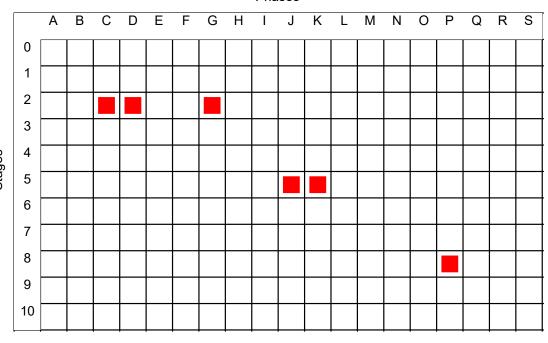
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

UTC Stage and Mode Data Definitions

		0	Damand			0	Damagad	Mode Data Definitions
Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Manual Mode Operative:
)				16				☐ G1/G2 ☑ RR ☐
1	1F1	1G1		17				Manual Mode Selected:
2	#1F2	1G2	1DR2	18				
3				19				No Lamp Power, or Lamps Off due to RLM or Pa
4	2F4	2G4		20				Time:
5	#2F5	2G5	2DR5	21				☑ G1/G2 ☐ ☐
6				72				Detector Fault:
7	3F7	3G7		23				□ □ ØF
8	#3F8	3G8	3DR8	24				Normal NOT selected on the
9	3F9	3G9		25				Manual Panet: ☐ G1/G2 ☑ RR ☐
10	3F10	3G10		26				
11				27				RR Button Selected:
12				28				☐ G1/G2 ☐ RR ☐
13				29				If UTC Reply Confirms are required for a Controller
14				30				Fault (CF) OR for separate MC and RR replies, Conditioning must be used.
15				31				Continue in griffuse the used.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


UTC Demand Dependent Forces

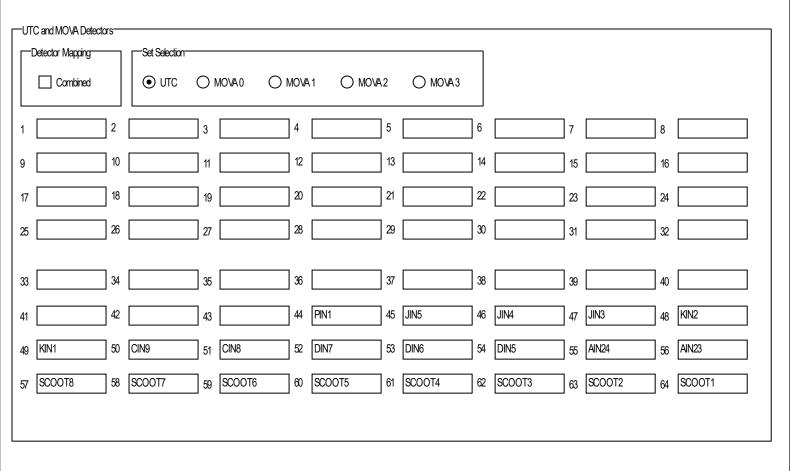
Clear Grid Data

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

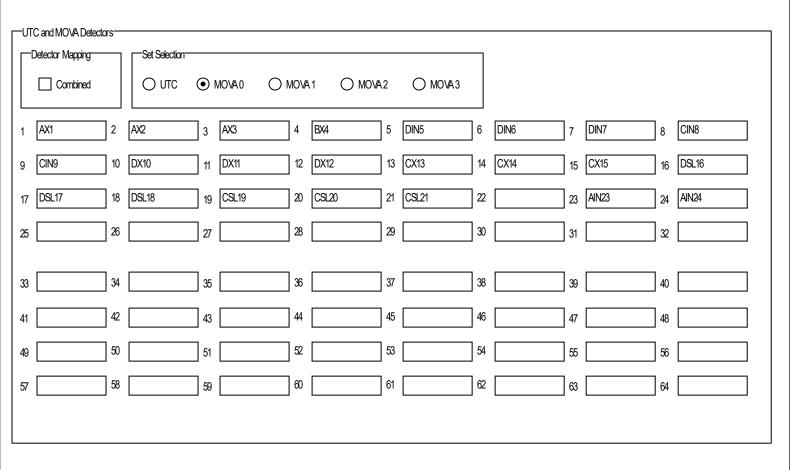
Phases

Engineer

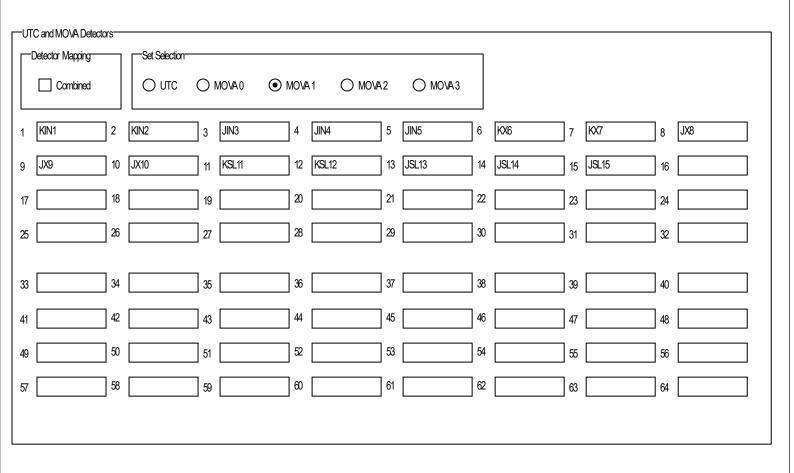

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

MOVA Stages

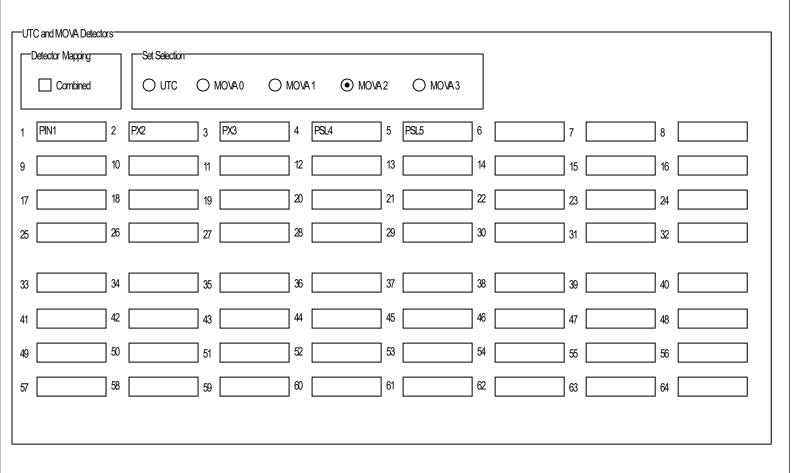
-MOVA S	Stages											
	•					Mode Data Definitions						
Stage	Force Bit	Green Confirm Bit	J	Force Bit	Green Confirm Bit	Manual Mode Operative: ☐ G1/G2 ☐ RR/CRB						
0			16			Manual Mode Selected:						
1	MOVA0F1	MOVA0CON1	17			G1/G2 RR/CRB						
2	MOVA0F2	MOVA0CON2	18			_						
3			19			No Lamp Power, or Lamps Off due to RLM or Part Time:						
4	MOVA1F1	MOVA1CON1	20			☐ G1/G2 ☐ RR/CRB						
5	MOVA1F2	MOVA1CON2	21			Normal NOT selected on the						
6			22			Manual Panel: ☐ G1/G2 ☐ RR/CRB						
7	MOVA2F1	MOVA2CON1	23			_						
8	MOVA2F2	MOVA2CON2	24			RR Button Selected: G1/G2 RR/CRB						
9			25			I CITOL INVOICE						
10			26									
11			27			Report as UTC Mode						
12			28			MOVA Control Timer (x10)						
13			29			MOVA Deactivate Timer 2.0						
14			30			MOVA Release Timer						
15			31									
NOTE: If	NOTE: If a MOVA Kernel does not map to the same numbered stream (0-3), refer to the help.											


Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Engineer : (Yunex Traffic)

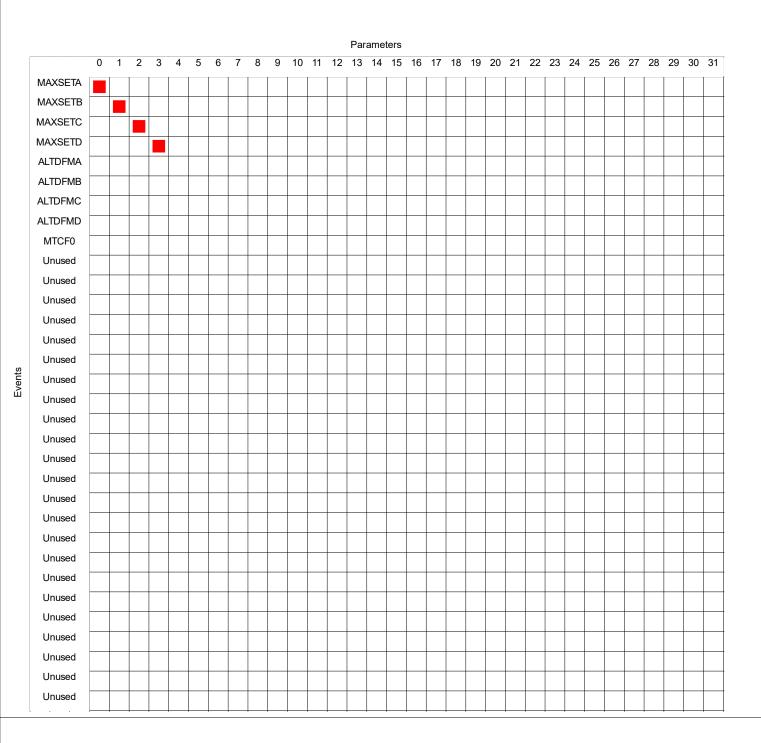
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


MTC - Time Switch Parameters

	Туре	Event		Туре	Event
0	Alternate Max	MAXSETA	16	No Action	
1	Alternate Max	MAXSETB	17	No Action	
2	Alternate Max	MAXSETC	18	No Action	
3	Alternate Max	MAXSETD	19	No Action	
4	Alternate DFM	ALTDFMA	20	No Action	
5	Alternate DFM	ALTDFMB	21	No Action	
6	Alternate DFM	ALTDFMC	22	No Action	
7	Alternate DFM	ALTDFMD	23	No Action	
8	Conditioning	MTCF0	24	No Action	
9	No Action		25	No Action	
10	No Action		26	No Action	
11	No Action		27	No Action	
12	No Action		28	No Action	
13	No Action		29	No Action	
14	No Action		30	No Action	
15	No Action		31	No Action	

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

MTC - Time Switch Parameters Array

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

MTC - Day Type

-MTC - Da	y Type—						
No.	Mon	Tue	Wed	Thu	Fri	Sat	Sun
0						abla	
1							\checkmark
2	\checkmark						
3		\checkmark					
4			\checkmark				
5				\checkmark			
6					\checkmark		
7	\checkmark						
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
10							
11							
12							
13							
14							
15							

(Yunex Traffic) Engineer

: M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

MTC - Timetable

			View Timetable Settings			
			⊙ 0 - 15	32 - 47	O 48 - 63	
No.	Day	Time	Description	Functi		
	Туре	[27.00.00	[vo==.	Code	Parameter	Function Codes:
0	9	07:00:00	MAX SETA	2	0	
1	9	09:30:00	MAX SET B	2	1	0 = Isolate From CLF
2	9	15:30:00	MAX SET C	2	2	1 = Introduce a CLF Pl
3	9	19:00:00	MAX SET D	2	3	2 = Introduce a Param
4	0	09:00:00	MAX SETA	2	0	(Combination of event
5	0	19:00:00	MAX SET D	2	3	3 = Selects an Individu
6	1	09:00:00	MAX SETA	2	0	switch to be set
7	1	19:00:00	MAX SET D	2	3	4 = Selects an Individu switch to be cleared.
8	0			0	0	
9	9	07:00:01	INTRODUCE CLF PLAN 1	1	1	
10	9	09:30:01	INTRODUCE CLF PLAN 2	1	2	
11	9	15:30:01	INTRODUCE CLF PLAN 3	1	3	
12	9	19:00:01	INTRODUCE CLF PLAN 4	1	4	
13	0	09:00:01	INTRODUCE CLF PLAN 1	1	1	
14	0	19:00:01	INTRODUCE CLF PLAN 2	1	2	
15	1	09:00:01	INTRODUCE CLF PLAN 1	1	1	

ter witches)

al event

al event

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

MTC - Timetable

MTC - Tim	netable		View Timetable Settings			7
			0 - 15 • 16 - 31	32 - 47	O 48 - 63	
	_	_				
No.	Day Type	Time	Description	Function Code	Plan/ Parameter	
16	1	19:00:01	INTRODUCE CLF PLAN 2	1	2	Function Codes:
17	7	01:00:00	DISABLE THE CRB (IF CFF0 SET)	3	8	0 = Isolate From CLF
18	7	01:00:30	ENABLE THE CRB (IF CFF0 SET)	4	8	1 = Introduce a CLF Plan
19	0			0	0	2 = Introduce a Parameter
20	0			0	0	(Combination of event switches)
21	0			0	0	3 = Selects an Individual event
22	0			0	0	switch to be set
23	0			0	0	4 = Selects an Individual event switch to be cleared.
24	0			0	0	
25	0			0	0	
26	0			0	0	
27	0			0	0	
28	0			0	0	
29	0			0	0	
30	0			0	0	
31	0			0	0	

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

LMU - General

LMU - General						
Lamp Monitoring - LMU Voltage]				
	48					
	0					
Red Lamp Monitoring		J				
Max Red Bulb Wattage		First Red	Lamp Fault S	peed	0	
RLF2 Cancels RLM additional	Intergreens	RLMA	dditionalInte	rgreen Han	dset Limits	
RLF2 Only Cleared by RFL =	1		Minimum		Maximum	
RLF1 Only Cleared by RFL =	1		2		10	
Streams with Phase BlackOut o	n RLF2					\neg
0 1 0	2 🗆					

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

LMU Sensors (Built-in)

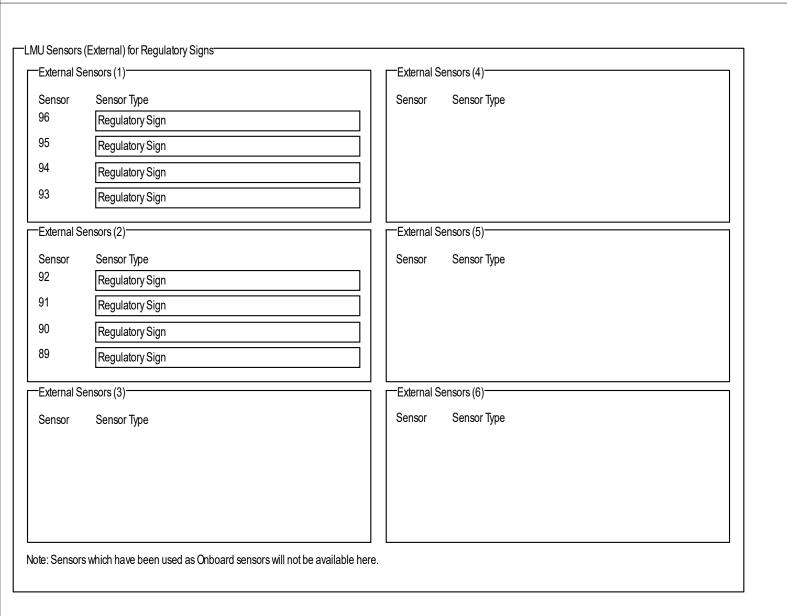
-LMU Sensors	s (Built-in)—											
		No. of LSLS 2	S cards fitted	HPU Connection 1								
Sensor Co	Sensor Configuration For LSLS 1 (Cabinet 1)											
Phase	Aspect	Sensor#	Sensor Type		Phase	Aspect	Sensor#	Sensor Type				
A	Red	1	As Seq.		F	Red	7	R,G				
A	Amber	1	As Seq.		F	Amber	8	Wait				
A	Green	1	As Seq.		F	Green	7	R,G				
В	Red	2	As Seq.		F	Green	N/A					
В	Amber	2	As Seq.		G	Red	9	R,G				
В	Green	2	As Seq.		G	Amber	10	Wait				
С	Red	3	As Seq.		G	Green	9	R,G				
С	Amber	3	As Seq.		G	Green	N/A					
С	Green	3	As Seq.		Н	Red	11	As Seq.				
D	Red	4	As Seq.		Н	Amber	11	As Seq.				
D	Amber	4	As Seq.		Н	Green	11	As Seq.				
D	Green	4	As Seq.		ı	Red	12	As Seq.				
E	Red	5	R,G			Amber	12	As Seq.				
E	Amber	6	Wait			Green	12	As Seq.				
E	Green	5	R,G		J	Red	13	As Seq.				
E	Green	N/A]		J	Amber	13	As Seq.				
		-	-				-					

Note: A (*) character next to a sensor number indicates that the sensor would also be available on the External sensors screen. Please be sure you wish to use these sensors here, as they will then become unavailable for Regulatory Signs.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

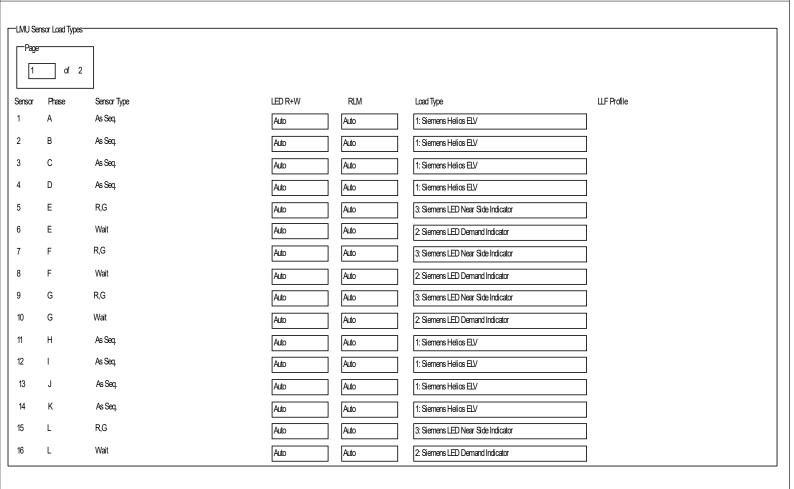
LMU Sensors (Built-in)


		No. of LSLS cards fitted 2		HPU Connection 1				
Sensor C	onfiguration Fo	or LSLS 2 (Cab	oinet 1)					
Phase	Aspect	Sensor#	Sensor Type		Phase	Aspect	Sensor#	Sensor Type
J	Green	13	As Seq.		0	Amber	20	As Seq.
K	Red	14	As Seq.		0	Green	20	As Seq.
K	Amber	14	As Seq.		P	Red	21	As Seq.
K	Green	14	As Seq.		P	Amber	21	As Seq.
L	Red	15	R,G		P	Green	21	As Seq.
L	Amber	16	Wait		N/A	N/A		
L	Green	15	R,G		N/A	N/A		
L	Green	N/A			 N/A	N/A		
M	Red	17	R,G		N/A	N/A		
M	Amber	18	Wait		N/A	N/A		
M	Green	17	R,G		N/A	N/A		
M	Green	N/A			N/A	N/A		
N	Red	19	As Seq.		N/A	N/A		
N	Amber	19	As Seq.		N/A	N/A		
N	Green	19	As Seq.		N/A	N/A		
0	Red	20	As Seq.		N/A	N/A		

Note: A (*) character next to a sensor number indicates that the sensor would also be available on the External sensors screen. Please be sure you wish to use these sensors here, as they will then become unavailable for Regulatory Signs.

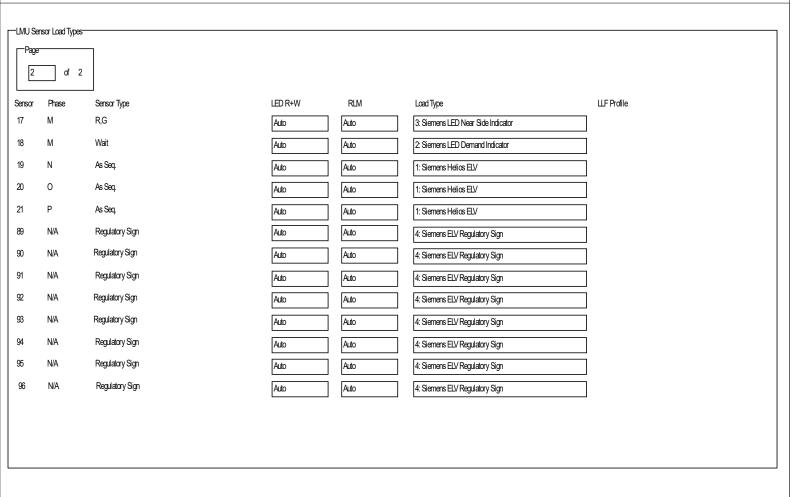
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


LMU Sensors (External) for Regulatory Signs

Engineer : (Yunex Traffic)

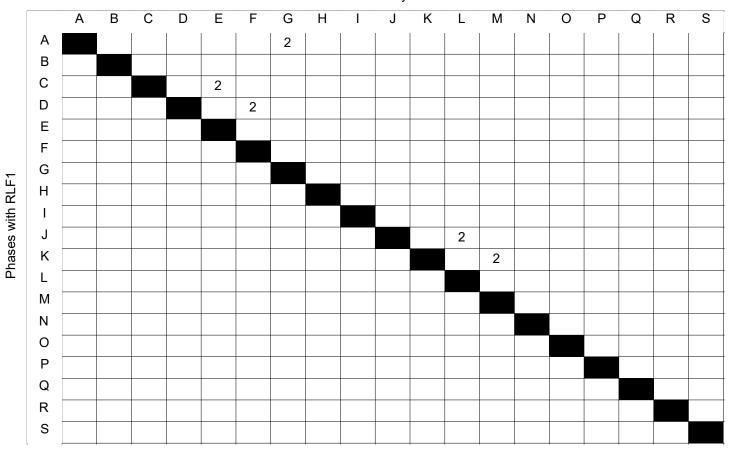
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


LMU Sensor Load Types

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

LMU Sensor Load Types

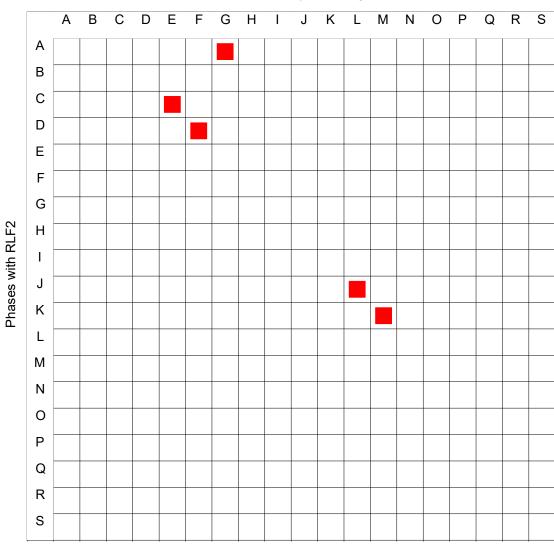


Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

RLM Additional Intergreens

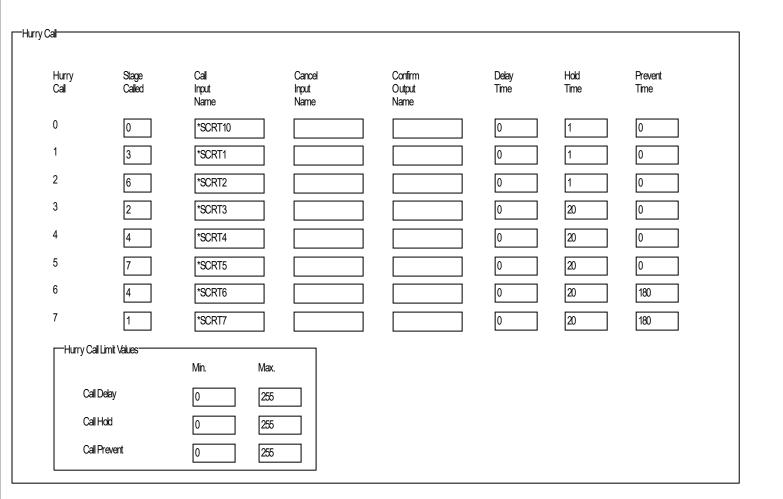
Phases Delayed



Engineer : (Yunex Traffic)

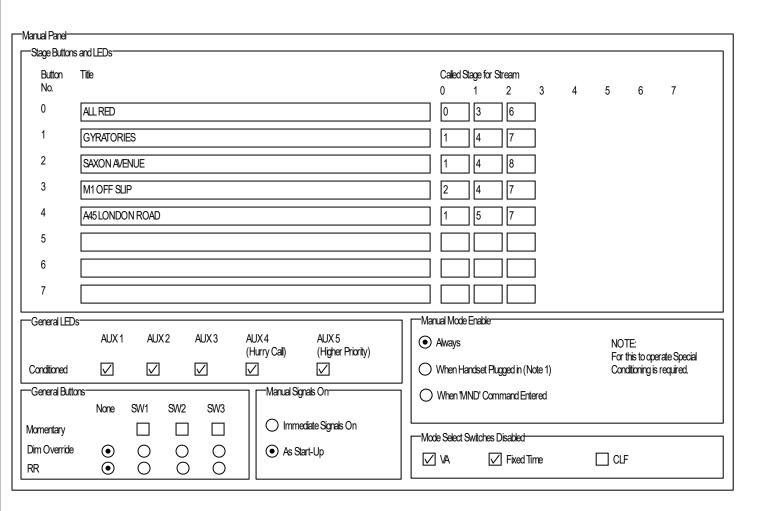
Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

RLM Phase Inhibits


Phases Inhibited/Blacked-Out

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100


Hurry Call

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Manual Panel

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Reserve State

Reserve State	Stream	0	1	2	3	4	5	6	7	
Timeout (seconds)	Go to Switch Off Stage Part Time on App Failure or Timeout									Global Settings Use Defaults
Limited Time Timeout (seconds)	Fixed Time Part Time Hold Stage	O	OO	OO	OO	OO	• 0 0	• 0 0	• • • •	Timeouts
After Timeout	Fixed Time Part Time Hold Stage	• O	• • • •	OO	OO	• • • •	0 = Use Firmware default			

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

```
; MANUAL PANEL
    IFT (MODE0 EQL<6>+MODE1 EQL<6>+MODE2 EQL<6>) THN
        TRUE = MIL17
        IFT (MODEO EQL<16>.MODE1 EQL<16>.MODE2 EQL<16>) THN
            CNDTMA93 = MIL17
             (MODEO EQL<16>+MODE1 EQL<16>+MODE2 EQL<16>).CNDTMA83 = MIL17
    END
    IFT (/CNDTMA93./CNDPRV93) THN
                                                           ; SLOW PULSE UNIT
        RUN<93>
    IFT (/CNDTMA83./CNDPRV83) THN
                                                           ; FAST FLASH UNIT
        RUN<83>
    END
; PERMANENT DEMANDS AND EXTENSIONS
   TRUE::=+UCPHH
                                              ; PERMANENT DEMAND FOR PHASE H
        *=+EXOH
                                              ; PERMANENT EXTENSIONS FOR PHASE H
        *=+EXCH
   TRUE: :=+UCPHI
                                              ; PERMANENT DEMAND FOR PHASE I
                                              ; PERMANENT EXTENSIONS FOR PHASE I
        *=+EXOI
        *=+EXCI
   TRUE::=+UCPHN
                                              ; PERMANENT DEMAND FOR PHASE N
        *=+EXON
                                              ; PERMANENT EXTENSIONS FOR PHASE N
        *=+EXCN
   TRUE::=+UCPHO
                                              ; PERMANENT DEMAND FOR PHASE O
         *=+EXOO
                                              ; PERMANENT EXTENSIONS FOR PHASE O
        *=+EXCO
; EXTRA DETECTOR INPUTS
                                             ; CSL20,21 DETECTORS TO DEMAND AND EXTEND PHASE C
(CSL20 EXT+CSL21 EXT)::=+EXOC
                       *=+EXCC
                                              ; DSL17,18 DETECTORS TO DEMAND AND EXTEND PHASE D
(DSL17_EXT+DSL18_EXT)::=+EXOD
                       *=+EXCD
                       *=+LCPHD
(\mathtt{JSL14}\_\mathtt{EXT} + \mathtt{JSL15}\_\mathtt{EXT}) ::= + \mathtt{EXOJ}
                                              ; JSL14,15 DETECTORS TO DEMAND AND EXTEND PHASE J
                       *=+EXCJ
                       *=+T.CPH.T
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

```
; PHASE REVERTIVE DEMANDS ACTIVE UNLESS IN MOVA MODE
NOT (MODEO EQL<16>).FZTMEXA=+LCPHA
NOT (MODEO EQL<16>).FZTMEXB=+LCPHB
NOT (MODEO EQL<16>).FZTMEXC=+LCPHC
NOT (MODEO EQL<16>) .FZTMEXD=+LCPHD
NOT (MODE1 EQL<16>).FZTMEXH=+LCPHH
NOT (MODE1 EQL<16>).FZTMEXI=+LCPHI
NOT (MODE1 EQL<16>).FZTMEXJ=+LCPHJ
NOT (MODE1 EQL<16>).FZTMEXK=+LCPHK
NOT (MODE2 EQL<16>) .FZTMEXN=+LCPHN
NOT (MODE2 EQL<16>).FZTMEXO=+LCPHO
NOT (MODE2 EQL<16>).FZTMEXP=+LCPHP
; U.T.C. CONTROL AND REPLY BITS
; Inhibit MOVA on stream 0 when U.T.C. comms active and 1MO bit is 0
; NB: Requires mapping of TC to port csi.cond.out.1 bit 1 (conditioning bit ESPRXO) on the I/O Mapping Web Page
                Simulate U.T.C. Comms (ESPRXO, ENABLE FOR EMULATOR TESTING)
; CFF20=1 -
; CFF21=1 -
                REMOVES THE REQUIREMENT FOR 1MO,2MO OR 3MO ON STREAMS 0
                REMOVES THE REQUIREMENT FOR 1MO, 2MO OR 3MO ON STREAMS 1
; CFF22=1 - REMOVES THE REQUIREMENT FOR 1MO,2MO OR 3MO ON STREAMS 2
    IFT (MANDOORSW+ESPRX0) THN
        FALSE = CFF1000
                                                  ; TC
        FALSE = CFF1001
                                                  ; SF1
        FALSE = CFF1002
        FALSE = CFF1003
        FALSE = CFF1004
                                                  ; SF4
    IFT /(ESPRX0+CFF1000) THN
                                                  ; U.T.M.C. NOT ONLINE, RESTART DELAY (3)
                                                  ; TIMER 31 SET TO 3 SECONDS - U.T.C. COMMS DELAY
        RUN<31>
     ({\tt ESPRX0+CFF1000})./({\tt 1MO+CNDTMA31+CFF20}) = 2{\tt SCRT200}
     (ESPRX0+CFF1000)./(2MO+CNDTMA31+CFF21)=2SCRT201
     (ESPRX0+CFF1000)./(3MO+CNDTMA31+CFF22)=2SCRT202
                                                  ; REPLY FOR 1MR CONFIRM
    NOT (1MO) = 1MR
    NOT (2MO) = 2MR
                                                  ; REPLY FOR 2MR CONFIRM
    NOT (3MO) = 3MR
                                                  ; REPLY FOR 3MR CONFIRM
                                                  ; MOVA ON CONTROL REPLY 1ML
    NOT (MODE 0 EOL<16>)=1ML
    NOT (MODE1 EQL<16>) = 2ML
                                                  ; MOVA ON CONTROL REPLY 2ML
    NOT (MODE2 EQL<16>) = 3ML
                                                  ; MOVA ON CONTROL REPLY 3ML
    NOT (MOVAOMF) = 1MF
                                                  ; MOVA IN FAULT STATE REPLY 1MF
    NOT (MOVA1MF) = 2MF
                                                  ; MOVA IN FAULT STATE REPLY 2MF
    MOVA2MF = ESPTX0
                                                  ; MOVA IN FAULT STATE REPLY 3MF
    NOT (FLFCOM) = CF
    NOT (MODE 0 EOL<4>) = MC
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

```
NOT(FLF55) = LF1
    NOT (LMP1RED0+LMP1RED1+LMP1RED2+LMP1RED3) = LF2
    NOT(LMP2RED0+LMP2RED1+LMP2RED2+LMP2RED3) = LF3
    LMPON./FLF17 = LO
    LMPDIM = SB
    NOT((HRYSTA0 EQL<1>+HRYSTA0 EQL<2>+HRYSTA0 EQL<3>)+(MINQ+MINR+MINS))=1HC
    NOT((HRYSTA1 EQL<1>+HRYSTA1 EQL<2>+HRYSTA1 EQL<3>)+(MINQ+MINR+MINS))=2HC
    NOT((HRYSTA2 EQL<1>+HRYSTA2 EQL<2>+HRYSTA2 EQL<3>)+(MINQ+MINR+MINS))=3HC
                                               ; SF1/SC1
    (ESPRX1+CFF1001)::: = ESPTX1
                       = MOVAODET41
                      * = MOVA1DET41
                      * = MOVA2DET41
    (ESPRX2+CFF1002)::: = ESPTX2
                       = MOVAODET42
                      * = MOVA1DET42
                      * = MOVA2DET42
    (ESPRX3+CFF1003)::: = ESPTX3
                       = MOVAODET43
                      * = MOVA1DET43
                      * = MOVA2DET43
    (ESPRX4+CFF1004)::: = ESPTX4
                      * = MOVAODET44
                      * = MOVA1DET44
                      * = MOVA2DET44
    CCTO6 = ESPTX5
                                               ; CLOSEO
    /ONBAT = ESPTX6
                                               ; UPS - NC Outputs
    /LOWBAT = ESPTX7
    /UPSWRN = ESPTX8
    /UPSFLT = ESPTX9
; INPUTS FROM CONTROLLER 2 AQA,B,C AQ HURRY CALL STAGE 1
; ------
IFT CCTO3.NOT(2SCRT3) THN
   RUN<3>
END
;CNDTMA3=SCRT7
CCTO3=2SCRT3
IFT CCTO4.NOT(2SCRT4) THN
   RUN<4>
;CNDTMA4=SCRT7
CCTO4=2SCRT4
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

```
IFT CCTO5.NOT(2SCRT5) THN
    RUN<5>
(CNDTMA3+CNDTMA4+CNDTMA5) = SCRT7
CCTO5=2SCRT5
; CQ AND DQ HURRY CALLS FOR STAGES 2,4 AND 7
IFT CCTOO.NOT(2SCRT6).NOT(CNDTMA1) THN
    RUN<6>
    RUN<1>
END
;CNDTMA6=SCRT3
CCTO0=2SCRT6
IFT CCTO1.NOT(2SCRT7).NOT(CNDTMA1) THN
    RUN<7>
    RUN<1>
END
(CNDTMA6+CNDTMA7)::=SCRT3
                  *=SCRT4
                  *=SCRT5
CCTO1=2SCRT7
; MC1 OR MC2 MOTORWAY CLOSED INPUTS ACTIVE HURRY CALL ALL RED STAGES ON ALL STREAMS
    (MC1+MC2) = SCRT0
    NOT (MC1+MC2) =ROUGH0
    IFT CCTO6.NOT(1SCRT0) THN
        RUN<10>
        RUN<11>
        RUN<12>
    END
    CNDTMA10=SCRT10
    CNDTMA11=SCRT1
    CNDTMA12=SCRT2
    CCTO6=1SCRT0
    (MINQ+MINR+MINS):::::=1SCRT1
                                                 ; PREVENT MOVES FROM ALL RED STAGES TILL ALL STREAMS
                            *=PRVST1
                                                 ; HAVE RUN 10 SECONDS ( MIN GREENS TIMED OFF )
                           *=PRVST2
                           *=PRVST4
                           *=PRVST5
                           *=PRVST7
                            *=PRVST8
                           *=PRVST9
                           *=PRVST10
; MOTORWAY CLOSED INPUT ACTIVE PREVENT MOVA ON ALL STREAMS AND CALL CLF PLAN 5 TILL INPUT CLEARS
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning

IFT CCTO6 THN ; IF MC1 OR MC2 (CCTO6) BIT ACTIVE REQUEST CLF PLAN 5 LOD <5>1REQPLN

END END

IFT NOT(CCTO6).NOT(1SCRT40) THN ; IF MC1 OR MC2 (CCTO6) BIT CLEARS REVERT TO CURRENT TIMETABLED

RUN<13> ; CLF PLAN

NOT (CCTO6) =1SCRT40

IFT CNDTMA13 THN LOD <1>1CALCKP

(MTCF0.CFF0) + (CCTO6) :::::+2SCRT200=DISMOVA0

*+2SCRT201=DISMOVA1

*+2SCRT202=DISMOVA2

*=DISUTC0 *=DISUTC1

*=DISUTC2

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning

```
; MOVA STREAM 0
; LINK 11 = WC FROM PHASE E MOVAODET25
VRDMNDE=MOVA0DET25
; LINK 12 = WC FROM PHASE F MOVAODET26
VRDMNDF=MOVA0DET26
; LINK 13 = WC FROM PHASE G MOVAODET27
VRDMNDG=MOVA0DET27
; AQ = MOVAODET28
(CCTO3+CCTO4+CCTO5)=MOVA0DET28
; BQx = MOVA0DET29
BQ=MOVA0DET29
; CQ = MOVAODET30
CQ=MOVA0DET30
; DQ = MOVAODET31
DQ=MOVA0DET31
; MOVA 8 LINKING STAGE CONFIRMS BETWEEN STREAMS
(NXTSTG0 EQL<1>)=MOVA0DET32
(NXTSTG0 EQL<2>)=MOVA0DET33
(NXTSTG1 EQL<4>)=MOVA0DET34
(NXTSTG1 EQL<5>)=MOVA0DET35
(NXTSTG2 EQL<7>)=MOVA0DET36
(NXTSTG2 EQL<8>)=MOVA0DET37
; EXTERNAL STAGE CONFIRMS FROM CONTROLLER 2
C2S2=MOVAODET38
C2S5=MOVA0DET39
; MOVA Stream 0
MOVA10UT0=MOVA0DET63
MOVA2OUT1=MOVA0DET64
```

; MOVA Stream 1

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning

; -----

MOVA00UT0=MOVA1DET63 MOVA20UT1=MOVA1DET64

; MOVA Stream 2

MOVA0OUT0=MOVA2DET63 MOVA1OUT1=MOVA2DET64

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

```
; MOVA STREAM 1
BX4=MOVA1DET16
CCTO2=MOVA1DET17
; LINK 6 = WC FROM PHASE L MOVA1DET25
VRDMNDL=MOVA1DET25
; LINK 7 = WC FROM PHASE M MOVA1DET26
VRDMNDM=MOVA1DET26
; MOVA 8 LINKING STAGE CONFIRMS BETWEEN STREAMS
(NXTSTG0 EQL<1>)=MOVA1DET32
(NXTSTG0 EQL<2>)=MOVA1DET33
(NXTSTG1 EQL<4>) =MOVA1DET34
(NXTSTG1 EQL<5>)=MOVA1DET35
(NXTSTG2 EQL<7>)=MOVA1DET36
(NXTSTG2 EQL<8>)=MOVA1DET37
; EXTERNAL STAGE CONFIRMS FROM CONTROLLER 2
C2S2=MOVA1DET38
C2S5=MOVA1DET39
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning

; LINKING TO AND FROM CONTROLLER 2 SOUTH

C2AQA=C2AQAOUT C2AQB=C2AQBOUT

C2AQB=C2AQBOUT C2AQC=C2AQCOUT

(NXTSTG0 EQL<2>)=C1S2 (NXTSTG1 EQL<5>)=C1S5 (NXTSTG2 EQL<8>)=C1S8

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning Timers

16	rs										
)-	31]								
	Value	Min	Max	200ms	Description	No	Value	Min	Max	200ms	Description
		0	255			16		0	255		
	180	0	255		CQ AND DQ HURRY CALL O/RIDE	17		0	255		
		0	255			18		0	255		
	2	0	255		C2AQAHURRY CALL STAGE 1	19		0	255		
	2	0	255		C2AQB HURRY CALLSTAGE 1	20		0	255		
	2	0	255		C2AQC HURRY CALLSTAGE 1	21		0	255		
	2	0	255		CQ HURRY CALLS STAGES 2/4/7	22		0	255		
	2	0	255	$\neg \Box$	DQ HURRY CALLS STAGES 2/4/7	23		0	255		
		0	255			24	0.6	0.6	31.8		FLASH ON TIMER
		0	255			25	0.6	0.6	31.8		FLASH OFF TIMER
	2	0	255		MC HURRY CALLSTREAM 0	26		0	255		
	2	0	255		MC HURRY CALLSTREAM 1	27		0	255		
	2	0	255	$\exists \Box$	MC HURRY CALLSTREAM 2	28		0	255		
	1	0	255		CLEAR CLF PLAN 5 REQUEST	29		0	255		
	1	0	255		CLEAR DISABLE CLF REQUEST	30		0	255		
		0	255	ĪП		31	3	0	255	$\exists \Box$	U.T.C. COMMS DELAY

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Conditioning Timers

_Tim	Conditioning ers 4-95	IIIIGS									
No	Value	Min	Max	200ms	Description	No	Value	Min	Max	200ms	Description
64		0	255			80		0	255		
65		0	255			81		0	255		
66		0	255			82		0	255		
67		0	255			83	0.4	0.4	1		LED - Fast Flash
68		0	255			84		0	255		
69		0	255			85		0	255		
70		0	255			86		0	255		
71		0	255			87		0	255		
72		0	255			88		0	255		
73		0	255			89		0	255		
74		0	255			90		0	255		
75		0	255			91		0	255		
76		0	255			92		0	255		
77		0	255			93	3	2	5		LED - Slow Pulse
78		0	255			94		0	255		
79		0	255			95		0	255		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Fault Log Flags

				0 1] [0 1		Note:
Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Cond Flag - If a fault occurs which sets a fault
0	$\overline{\vee}$		16			32			48			log flag that has been checked
1	\checkmark		17			33	\checkmark		49	\checkmark		for this Cond flag option then a flag will be set that can be read in
2	\checkmark		18	\checkmark		34	\checkmark		50	\checkmark		Conditioning.
3	\checkmark		19	\checkmark		35	\checkmark		51	\checkmark		
4	\checkmark		20	\checkmark		36	\checkmark		52	\checkmark		Act Flag -
5	\checkmark		21	\checkmark		37	\checkmark		53	\checkmark		If a fault occurs which sets a fault log flag that has been checked for
3	\checkmark		22			38	\checkmark		54	\checkmark		this Act flag option then firstly the lamps
7	\checkmark		23	\checkmark		39	\checkmark		55			will be switched OFF and secondly
3	\checkmark		24	\checkmark		40	\checkmark		56	\checkmark		a flag will be set that can be read in
)	\checkmark		25	\checkmark		41	\checkmark		57	\checkmark		conditioning, to allow any further actions required to be performed by
0	\checkmark		26	\checkmark		42	\checkmark		58	\checkmark		conditioning.
1	\checkmark		27	\checkmark		43	\checkmark		59	\checkmark		
2			28	\checkmark		44	\checkmark		60	\checkmark		
3	\checkmark		29	\checkmark		45	\checkmark		61	\checkmark		
14	\checkmark		30	\checkmark		46	\checkmark		62	\checkmark		Clearance of Special Conditionir
15	\checkmark		31	\checkmark		47	\checkmark		63	abla		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Instructions

NN0014						
Card Type	Rack Posn	Addr.	Port	Type	Line	Term Posn
Intelligent Backplane 16/0	Rack	01	0	I	000 - 007	2 LT1
Intelligent Backplane 16/0	Rack	01	1	I	008 - 015	2 LT1
Intelligent Backplane 16/0	Rack	02	2	I	016 - 023	2 LT2
Intelligent Backplane 16/0	Rack	02	3	I	024 - 031	2 LT2
Intelligent Backplane 16/0	Rack	03	4	I	032 - 039	2 LT3
Intelligent Backplane 16/0	Rack	03	5	I	040 - 047	2 LT3
Intelligent Backplane 16/0	Rack	04	6	I	048 - 055	2 LT4
Intelligent Backplane 16/0	Rack	04	7	I	056 - 063	2 LT4
Serial IO 24/16	1 I/01	05	8	I	064 - 071	1 I/01
Serial IO 24/16	1 I/01	05	9	I	072 - 079	1 I/01
Serial IO 24/16	1 I/01	05	10	I	080 - 087	1 I/01
Serial IO 24/16	1 I/01	05	11	0	088 - 095	1 I/01
Serial IO 24/16	1 I/01	05	12	0	096 - 103	1 I/01
Serial IO 24/4	1 I/O2	06	13	I	104 - 111	1 I/O2
Serial IO 24/4	1 I/O2	06	14	I	112 - 119	1 I/O2
Serial IO 24/4	1 I/O2	06	15	I	120 - 127	1 I/02
Serial IO 24/4	1 I/O2	06	16	0	128 - 131	1 I/02
CPII	Δ					

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Instructions

ST950 ELV CONTROLLER ITEMS LIST SHEET 1 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS
l	l	<u></u>	l	l	l
1				l	
		ST950ELV CAB UK 20A 1LSLS GRY	1		
		ST950ELV CAB UK 40A 1LSLS GRY	!		
		ST950ELV CAB UK 20A 1LSLS BLK	!		
		ST950ELV CAB UK 40A 1LSLS BLK		!	
		ST950ELV CAB UK 20A 1LSLS LOW INRUSH GRY			l
/ 8		ST950ELV CAB UK 20A 1LSLS LOW INRUSH BLK			
	'	IRIX I ama and the (IOIO) hit	1		
		ELV Lamp switch (LSLS) kit ELV Lamp switch (LSLS) backplane kit	1		
		I/O card kit (4 outputs)	1 1		
		I/O card kit (4 outputs)	1 1		
		ST950 CPU I/O kit (4 outputs)	1 1		
		ST950 CPU I/O kit (4 outputs) ST950 CPU I/O kit (4 outputs) cableform	1	l I	
1 15	1 00 // 1/ 43 932 / 001	S1930 CFO 1/O KIC (4 Outputs) Cableloim	1	l I	
1 16	 	1	1	 	
1 17	 		1	l I	I I
	I I 667/1/32910/950	Intelligent detector backplane kit	1 4	l I	I I
		ELV detector 6U rack expansion kit	1 1		I
		ST900 ELV 24 V detector supply Kit (6A)	-	I	!
		19" Detector Rack	i	i	
22	l	1	i	İ	
	667/1/32980/040	ELV 20A to 40A upgrade kit	i	i	I
24			i	i	I
25		İ	i	İ	
26	667/1/33070/000	ELV Regulatory Sign expansion kit	İ	l	
27	667/1/32955/000	ELV Audible supply kit			I
28	667/1/27117/000	ST900 300mA RCD kit			I
29				l	I
30	667/1/32900/001	Expansion cabinet kit - Black			l
		Expansion cabinet kit - Grey			I
		Cabinet mounted cut-out connection kit			I
	667/1/33007/000	LSLS Expansion cabinet kit			I
34					I
35			1	I	
		Manual Panel Full kit	1		
	1667/1/27110/000	Manual Panel RS232 kit	1		
38			1	l	
39			1		I
40			1	l	
ļ		1	I	I	
1					
1					

Note 1: Please refer to special instruction pages for additional information on items marked with an '*'.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Instructions

ST950 ELV CONTROLLER ITEMS LIST SHEET 2 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS
1			1		I
41			1	I	
42	667/1/45990/000	ST950ELV CUCKOO KIT - T400L	İ	İ	
43	667/1/45991/000	ST950ELV CUCKOO KIT - ST800	1	1	
1 44	667/1/45992/000	ST950ELV CUCKOO KIT - MICROSENSE MTC	i	i	I
i 45	667/1/45993/000	ST950ELV CUCKOO KIT - MICROSENSE SENTNL	i	i	I
46	667/1/45994/000	ST950ELV CUCKOO KIT - PEEK TSC3	i	i	i İ
47	667/1/45995/000	ST950ELV CUCKOO KIT - PEEK TRX	1	1	
48			İ	İ	
49			İ	İ	
50			İ	İ	
51			İ	İ	
52	667/1/33073/000	ST900 Isolator locking kit	İ	İ	
53	667/2/20234/000	Screw Lock Key	İ	İ	
54			İ	İ	
55			İ	İ	
56	667/1/27104/000	ST800 / ST900 DFM Lens Kit	İ	İ	
57	667/7/46690/000	NAL CONTROLLER CABINET BASE GREY	1		
58	667/7/46690/001	NAL CONTROLLER CABINET BASE BLACK	1		
59	667/2/27096/000	ST800 / ST900 Mounting Stool	1		
60	l		1		
61					
		Telephone Kit (Lightning protection)			
63	667/1/27118/000	Surge Arrester (Lightning protection)			
64					
		ST950 ELV Cabinet Export 20A 1 LSLS - Grey			
		ST950 ELV Cabinet Export 40A 1 LSLS - Grey			
		ST950 ELV RACK 19" 1LSLS			
		ST900 ELV additional LSLS rack wiring kit	1		
69					
		ST900 ELV to ST950 ELV conversion kit	I	I	
		Manual Panel Signals off only	I	I	
		Temporary USB Wi-Fi Dongle	I	I	
		ST950 RTC backup battery	I	I	
		Mains kit (ST950ELV) - No maint sockets	I	I	
		2U 19" UTMC communications tray	1	1	
		Anti graffiti coating	1	1	
		Mains kit (ST950ELV)	1	1	
		ELV 24V detector supply kit (2A)	1	1	
	667/1/27018/950	GPS Clock Kit	1	1	
80			I		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Instructions

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Special Instructions

*****PLEASE NOTE ******

ALL OF THE CAMERA INPUT'S HAVE BEEN INVERTED

THIS INCLUDES THE VECHICLE MVD'S, KERBSIDES AND ONCROSSINGS, YOU WILL NEED TO MAKE SURE THE INSTALLER IS AWARE OF THIS SO THE CORRECT OUTPUT WIRING FROM THE MVD'S IS CONNECTED.

THIS IS TO MAKE SURE THE INPUT GOES ACTIVE OR P.D. IF ANY OF THE MVD'S ARE DISCONNECTED.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Call Cancel

1	Call Cancel				
	Unit No.	Input Name	Call Delay	Cancel Delay	Phase Demanded (Unlatched Demand)
	0	CQ	25	2	
	1	DQ	25	2	
	2	BQ	15	2	
	3	C1AQAIN	20	2	
	4	C1AQBIN	20	2	
	5	C1AQCIN	20	2	
	6	*SCRT0	0	255	
	7		0	0	

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

	s and Ou Enable	Signal R	dequired		—Part Num	ber & Type				nı te		Outpu	le.		Type & Address						
	Check	boxes IAlboatio			Port:	0				puts & O				Car	elligent Backplane 16/0 rdAddress: 1						
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE	Us Pri	ed By HC CC	IG	UD LRT	Term Block	Terminal No
\supset	0	0	I	AX1		\checkmark	\checkmark					А	0	4.0						2LT1	A1
\supset	1	1	I	AX2		\checkmark						Α	0	4.0						2LT1	A2
\supset	2	2	1	AX3		\checkmark	\checkmark					Α	0	4.0						2LT1	A3
\supset	3	3	I	BX4		\checkmark	\checkmark					Α	0	4.0						2LT1	A4
\supset	4	4	I	DIN5		\checkmark	\checkmark					Α	0	0.0						2LT1	B1
	5	5	I	DIN6		\checkmark	\checkmark					Α	0	0.0						2LT1	B2
	6	6	1	DIN7		\checkmark	\checkmark					Α	0	0.0						2LT1	B3
\supset	7	7	I	SCOOT	1	abla	abla					N		0.0						2LT1	B4
	<u>A</u> dd Manua		timisation	Delete		<u>M</u> ove		Clear <u>U</u> so	edBy		Move to	o/from <u>b</u> ad	ckplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Inpu	ts and Ou	tputs—			—Dort Num	hor 0 Timor									īmo 8 Address		
	Check	Signal R boxes Albcatio			Port Num Port:	1			O In	puts puts & Ou) Outpul	s	Intel	ÿpe & Address ligent Backplane 16/0 d'Address 1		
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Used By Phs UTC SDE Pri HC CC IG UD L	Term RT Block	Terminal No
0	8	0	I	CIN8		\checkmark	\checkmark					Α	0	0.0		2 LT1	C1
0	9	1	1	CIN9		\checkmark	\checkmark					Α	0	0.0		2 LT1	C2
0	10	2	I	CQ		\checkmark	\checkmark					I	2	0.0		2 LT1	C3
0	11	3	I	DQ		\checkmark	\checkmark					I	2	0.0		2LT1	C4
0	12	4	I	DX10		\checkmark	\checkmark					Α	0	4.0		2 LT1	D1
0	13	5	I	DX11		\checkmark	\checkmark					Α	0	4.0		2 LT1	D2
0	14	6	I	DX12		\checkmark	\checkmark					Α	0	4.0		2 LT1	D3
0	15	7	I	SCOOT	2	\checkmark	\checkmark					N		0.0			D4
	<u>A</u> dd Manua	I Мар Ор	timisation [Delete		<u>M</u> ove		Clear <u>U</u> s	ed By		Move to	/from <u>b</u> ac	kplane				

: 857993755 Works Order EM Number : NN0014

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Input	and Out	puts-			Port Num	hor 0 Timon								—Card T	Type & Address						
	Check I	Signal Re boxes Alboation			Port:	2			O Ir	nputs nputs & O		Output	s	Intel	ligent Backplane 16/0 dAddress: 2						
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE	Use Pri	ed By HC CC	IG	UD LRT	Term Block	Terminal No
$\circ $	16	0	I	CX13		\checkmark	\checkmark					Α	0	4.0	\square \square					2LT2	A1
$\circ $	17	1	I	CX14		\checkmark	\checkmark					Α	0	4.0						2LT2	A2
$\circ $	18	2	I	CX15		\checkmark	\checkmark					Α	0	4.0						2LT2	A3
$\circ $	19	3	I	SCOOT	3	\checkmark	\checkmark					N		0.0						2LT2	A4
$\circ $	20	4	I	DSL16		\checkmark	\checkmark					Α	0	1.0						2LT2	B1
$\circ $	21	5	I	DSL17		\checkmark	\checkmark					Α	0	1.0						2LT2	B2
$\circ $	22	6	I	DSL18		\checkmark	\checkmark					Α	0	1.0						2LT2	В3
$\circ $	23	7	I	SCOOT	4	\checkmark						N		0.0						2LT2	B4
	<u>A</u> dd Manual	Map Opt	imisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Movet	o/from <u>b</u> ac	kplane]							

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Input	s and Ou	puts-			Port Num	hor & Timor								—Cord T	Type & Address						
	Check	Signal R boxes Albcatio			Port:	3			() In	puts puts & O		Output	S	Inteli	ligent Backplane 16/0 dAddress: 2						
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE	Use Pri	ed By HC CC	IG	UD LRT	Term Block	Terminal No
0	24	0	I	CSL19		\checkmark						Α	0	1.0	\square \square					2LT2	C1
0	25	1	1	CSL20		\checkmark	\checkmark					Α	0	1.0						2LT2	C2
0	26	2	I	CSL21		\checkmark	abla					Α	0	1.0						2LT2	C3
0	27	3	I	BQ		\checkmark						I	2	0.0						2LT2	C4
0	28	4	1	C2AQA		\checkmark						N		0.0						2LT2	D1
0	29	5	I	C2AQB		\checkmark	\checkmark					N		0.0						2LT2	D2
0	30	6	I	C2AQC		\checkmark						N		0.0						2LT2	D3
0	31	7	1	SCOOT	5	\checkmark	abla					N		0.0						2LT2	D4
	<u>A</u> dd Manual	Мар Ор	[timisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> ac	kplane								

: 857993755 Works Order EM Number : NN0014

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Inputs	and Out	puts-			-Port Numl	or & Timo								. —Card⊺	Type & Address
	Check	Signal Re boxes Alboation			Port:	4]	O In	puts puts & Ou) Outpu	s	Intel	igent Backplane 16/0 d'Address 3
- 1	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Used By Term Terminal Phs UTC SDE Pri HC CC IG UD LRT Block No
$\circ $	32	0	I	KIN1		\checkmark	abla					Α	0	0.0	☑ □ □ □ □ □ □ 2LT3 A1
$\circ $	33	1	I	KIN2		\checkmark	\checkmark					Α	0	0.0	☑ □ □ □ □ □ □ 2LT3 A2
$\circ $	34	2	I	SCOOTE	3	\checkmark	abla					N		0.0	☑ □ □ □ □ □ □ 2LT3 A3
$\circ $	35	3	I	SCOOT	7	\checkmark	\checkmark					N		0.0	☑ □ □ □ □ □ □ 2LT3 A4
$\circ $	36	4	I	JIN3		\checkmark	\checkmark					Α	0	0.0	☑ □ □ □ □ □ □ 2LT3 B1
$\circ $	37	5	I	JIN4		\checkmark						Α	0	0.0	☑ □ □ □ □ □ □ □ 2LT3 B2
$\circ $	38	6	I	JIN5		\checkmark	\checkmark					Α	0	0.0	☑ □ □ □ □ □ □ 2LT3 B3
$\circ $	39	7	I	SCOOTS	3							N		0.0	☑ ☐ ☐ ☐ ☐ ☐ 2LT3 B4
	<u>A</u> dd Manual	Map Opt	[imisation	Delete		Move		Clear <u>U</u> si	ed By		Move to	o/from <u>b</u> ad	kplane		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Input	s and Ou	tputs			—Dort Nive	har 0 Trans									Cord Time 9 Address						
	Check	Signal R boxes IAlboatio			Port Num	5			Outputs Outputs Outputs				Card Type & Address Intelligent Backplane 16 Card Address: 3	0							
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time		l DE Pri	Jsed By HC CC	IG	UD LRT	Term Block	Terminal No
0	40	0	I	KX6		\checkmark						Α	0	4.0						2LT3	C1
\circ	41	1	I	KX7		\checkmark	\checkmark					Α	0	4.0						2LT3	C2
\circ	42	2	I																	2LT3	C3
О	43	3	I																	2LT3	C4
\circ	44	4	I	JX8		\checkmark	\checkmark					Α	0	4.0						2LT3	D1
О	45	5	I	JX9		\checkmark	\checkmark					Α	0	4.0						2LT3	D2
О	46	6	I	JX10		\checkmark	\checkmark					Α	0	4.0						2LT3	D3
0	47	7	I																	2LT3	D4
	<u>A</u> dd Manual		timisation	Delete		<u>M</u> ove		Clear <u>U</u> se	edBy		Movet	o/from <u>b</u> a	ckplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Inpu	s and Ou	puts-			Port Num	har & Timo-									d Tur	oe & Address							
	Check	Signal R boxes Alboatio			Port:	6			Inputs &				ts	Ir	ntellige	ent Backplane Address: 4							
	DET No	Bit No	Type For O	Name		Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time		Phs UTC	SDE F	Use Pri H	d By IC CC	; IG	UD LRT	Term Block	Terminal No
С	48	0	I	KSL11		\checkmark	\checkmark					Α	0	1.0								2 LT4	A1
C	49	1	1	KSL12		\checkmark	\checkmark					Α	0	1.0		\square] [2LT4	A2
C	50	2	1																			2LT4	A3
C	51	3	I																			2LT4	A4
C	52	4	1	JSL13		\checkmark	abla					Α	0	1.0								21.74	B1
C	53	5	1	JSL14		\checkmark	\checkmark					Α	0	1.0		\square] [2LT4	B2
C	54	6	I	JSL15		\checkmark	\checkmark					Α	0	1.0		\square						2LT4	В3
C	55	7	1																			2 LT4	B4
	<u>A</u> dd Manual	Мар Ор	[[Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> a	ckplane										

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

-Input	s and Out	puts			— D - mt Ni,	L 0 T									0 A -l-l						
	Check	Signal Ro boxes Alboatio			Port Numl	per & Type			O Inp	outs outs & Ou		Output	s	Inteli	ype & Address ligent Backplane 16/0 d Address: 4						
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDI	U E Pri	sed By HC CC	; IG	UD LRT	Term Block	Terminal No
\circ	56	0	I	PIN1		\checkmark						Α	0	0.0						2LT4	C1
\circ	57	1	1	PX2		\checkmark	\checkmark					Α	0	4.0						2 LT4	C2
\circ	58	2	I	PX3		\checkmark	\checkmark					Α	0	4.0						2LT4	C3
$\circ $	59	3	I																	2LT4	C4
\circ	60	4	I	PSL4		\checkmark	\checkmark					А	0	1.0						2LT4	D1
$\circ $	61	5	I	PSL5		\checkmark						Α	0	1.0						2LT4	D2
$\circ $	62	6	I																	2LT4	D3
$\circ $	63	7	I																	2LT4	D4
	<u>A</u> dd Manual	Map Op	timisation	Delete		<u>M</u> ove		Clear <u>U</u> se	ed By		Move to	o/from <u>b</u> ac	kplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Input	s and Out	puts-			ort Number & Type								—Carr	d Type & Address—						
	Check	Signal Re boxes Alboation			Port: 8			O In	outs outs & O		Outpu	ts	s	erial IO 24/16 Fard Address 5						
	DET No	Bit No	Type I or O	Name	Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC S	DE Pri	Used By HC CC	IG	UD LRT	Term Block	Line No
\circ	64	0	I	AIN23	\checkmark			\checkmark			Α	0	0.0						11/01	I-0
\circ	65	1	I	AIN24	\checkmark			\checkmark			Α	0	0.0						11/01	I-1
\circ	66	2	I	EPBU126	\checkmark						Α	1	0.0						11/01	I-2
$\circ $	67	3	I	EPBU128	abla						Α	1	0.0						11/01	I-3
\circ	68	4	I	EPBU127	\checkmark						Α	1	0.0						11/01	I-4
\circ	69	5	I	EPBU129	\checkmark						Α	1	0.0						11/01	I-5
\circ	70	6	I	EOCD126	\checkmark			\checkmark			Α	0	0.6						11/01	I-6
	71	7	I	EOCD129	abla			abla			A	0	0.6						11/01	I-7
	<u>A</u> dd Manual	Map Opt	[timisation	Delete	Move		Clear <u>U</u> s	ed By		Movet	o/from <u>b</u> a	ckplane								

: 857993755 Works Order EM Number : NN0014

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-inputs a	uts and Outputs —Port Number & Type —Card Type & Address																					
_	Enable Signal Required Check boxes Port: 9 Check boxes Port: 9 CardAddress 5																					
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC	l SDE Pri	Jsed By HC CO	C IG	UD LRT	Term Block	Line No	
0 7	2	0	I	FPBU11	18	\checkmark						Α	1	0.0						11/01	I-8	
\bigcirc 7	"3	1	I	FPBU12	20	\checkmark						Α	1	0.0						11/01	I-9	
$\bigcirc 7$	' 4	2	I	FPBU11	9	\checkmark						Α	1	0.0						11/01	I-10	
\bigcirc 7	75	3	I	FPBU12	21	\checkmark						Α	1	0.0						11/01	I-11	
\bigcirc 7	6	4	I	FOCD12	20	\checkmark			\checkmark			Α	0	0.6						11/01	I-12	
\bigcirc 7	7	5	I	FOCD11	9	\checkmark			\checkmark			А	0	0.6						11/01	I-13	
$\bigcirc 7$	78	6	I	GPBU1	22	\checkmark						Α	1	0.0						11/01	I-14	
\bigcirc 7	9	7	I	GPBU1	16							Α	1	0.0						11/01	I-15	
	Add Dejete Move Clear Used By Move to/from backplane Manual Map Optimisation																					

: 857993755 Works Order EM Number : NN0014

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

-Input	s and Out	tputs-		-	—Port Numb	or & Timor								—Card T	/pe & Address	
	Enable Signal Required Check boxes Manual Alboation Inputs Outputs Serial IO 24/16 Card Address 5															
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Used By Term Line Phs UTC SDE Pri HC CC IG UD LRT Block No	
$\circ $	80	0	1	GPBU1	23	\checkmark						Α	1	0.0	☑ □ □ □ □ □ □ 11/01 I-16	
$\circ $	81	1	I	GPBU1	24	\checkmark						Α	1	0.0	☑ □ □ □ □ □ □ 1I/01 I-17	
$\circ $	82	2	I	GOCD1	22	\checkmark			\checkmark			Α	0	0.6	☑ □ □ □ □ □ □ 11/01 I-18	
$\circ $	83	3	I	GOCD1	23	\checkmark			\checkmark			Α	0	0.6	☑ □ □ □ □ □ □ 11/01 I-19	
\supset	84	4	1	LPBU10)1	\checkmark						Α	1	0.0	☑ □ □ □ □ □ □ 11/01 I-20	
\supset	85	5	1	LPBU10	03	\checkmark						Α	1	0.0	☑ □ □ □ □ □ □ 1I/O1 I-21	
	86	6	I	LPBU10	02	\checkmark						Α	1	0.0	☑ □ □ □ □ □ □ 1I/01 I-22	
	87	7	I	LPBU10)4	\checkmark						A	1	0.0	☑ ☐ ☐ ☐ ☐ ☐ 11/01 I-23	
Add Delete Move Clear Used By Move to/from backplane Manual Map Optimisation																

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Input	uts and Outputs Port Number & Type Card Type & Address																				
	DET No	Bit No	Type For O	Name	Redd	ВР	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC	SDE P	Used Br	y CC	IG	UD LRT	Term Block	Line No
О	88	0	0	C1S2	abla						N		0.0							11/01	0-0
C	89	1	0	C1S5	abla						N		0.0							11/01	0-1
C	90	2	0	C1S8	abla						N		0.0							11/01	0-2
C	91	3	0																	11/01	0-3
\supset	92	4	0	C2AQAOUT	г /						N		0.0							11/01	0-4
С	93	5	0	C2AQBOUT	r 🗸						N		0.0							11/01	0-5
C	94	6	0	C2AQCOUT							N		0.0							11/01	0-6
С	95	7	0																	11/01	0-7
	Add Dejete Move Clear Used By Move to/from backplane Manual Map Optimisation																				

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

O 106 2 I MPBU105 ✓ □ □ □ A 1 0.0 ✓ □ □ □ 100 O 107 3 I MPBU107 ✓ □ □ □ A 1 0.0 ✓ □ □ □ 100 O 108 4 I MPBU106 ✓ □	Line							
No No 10 ⁷ O	Line							
105 1 I LOCD102 ☑ □ ☑ □ A 0 0.6 ☑ □	No							
106 2 I MPBU105 ✓ □ □ □ A 1 0.0 ✓ □ □ □ 100 107 3 I MPBU107 ✓ □ □ □ A 1 0.0 ✓ □ □ □ 100 ○ 108 4 I MPBU106 ✓ □	2 1-0							
107 3 MPBU107	2 I-1							
O 108 4 I MPBU106	2 I-2							
	2 1-3							
○ 109 5 I MPBU108	2 1-4							
	2 1-5							
110 6 I MOCD107 ✓ □	2 I-6							
111 7 MOCD106	2 I-7							
Add Delete Move Clear Used By Move to/from backplane Manual Map Optimisation								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

No No 10°0 Group time Phs UTC SDE Pri HC CC IG UD LRT	Term Line Block No 11/O2 I-8 11/O2 I-9 11/O2 I-10 11/O2 I-11										
No No I or O Group time Phs UTC SDE Pri HC CC IG UD LRT	Blook No 11/O2 I-8 11/O2 I-9 11/O2 I-10										
113 1 I MC2 ✓ □<	11/O2 I-9 11/O2 I-10										
114 2 I	11/O2 I-10										
115 3 C1AQAIN											
116 4 C1AQBIN	1I/O2 I-11										
	1I/O2 I-12										
○ 117 5 C1AQCIN	11/O2 I-13										
> 118 6 1 C2S2	11/O2 I-14										
O 119 7 1 C285	11/O2 I-15										
Add Delete Move Clear Used By Move to/from backplane Manual Map Optimisation											

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 1 (North) Site Ref: 7100 Intersection

Enable Signal Required Check boxes	-Input	uts and Outputs —Port Number & Type —Card Type & Address																								
No No No 1 ONBAT		Enable Signal Required Check boxes Port: 15 Outputs Serial IO 24/4 Card A ddiress 6																								
121 1 LOMBAT				Type For O	Name		Req'd	BP (Count	Inv	U/D	Misc	DFM			Phs UTC	SDE	L Pri	Jsed By HC	CC	IG	UD LF	RT			
122 2 UPSWRN	\supset	120	0	1	ONBAT		\checkmark						N	0.0)									11/02	I-16	
123 3 UPSFLT	\supset	121	1	I	LOWBA	π	\checkmark						N	0.0)									11/02	I-17	
124 4 1	\supset	122	2	I	UPSWF	RN	\checkmark						N	0.0	١									11/02	I-18	
125 5 1	\supset	123	3	1	UPSFLI	Г	abla						N	0.0	1									11/02	I-19	
126 6	c	124	4	I																				11/02	I-20	
127 7	\supset	125	5	I																				11/02	I-21	
Add Delete Move Clear Used By Move to/from backplane	\supset	126	6	I																				11/02	1-22	
	\supset	127	7	I																				11/02	I-23	
Manual Map Optimisation																										

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Aspect Drives (ELV Controllers)

_							
	Reversed	ration for LSI	_S 1 of 2 cards (Ca	ahinet 1)———	HF	PU Connection	1
Output	Phase	Aspect	Use	Output	Phase	Aspect	Use
32	Α	Red	Phase	16	F	Red	Phase
31	Α	Amber	Phase	15	F	Amber	Phase
30	Α	Green	Phase	14	F	Green	Phase
29	В	Red	Phase	13	F	Green	Phase
28	В	Amber	Phase	12	G	Red	Phase
27	В	Green	Phase	11	G	Amber	Phase
26	С	Red	Phase	10	G	Green	Phase
25	С	Amber	Phase	9	G	Green	Phase
24	С	Green	Phase	8	Н	Red	Phase
23	D	Red	Phase	7	Н	Amber	Phase
22	D	Amber	Phase	6	Н	Green	Phase
21	D	Green	Phase	5	1	Red	Phase
20	Е	Red	Phase	4	1	Amber	Phase
19	Е	Amber	Phase	3	1	Green	Phase
18	Е	Green	Phase	2	J	Red	Phase
17	Е	Green	Phase	1	J	Amber	Phase

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

Aspect Drives (ELV Controllers)

	Reversed	r (10)	00.10		HF	PU Connection	1
-Aspect L Output	Phase	uration for LSI Aspect	.S 2 of 2 cards (Ca Use	Output	Phase	Aspect	Use
32	J	Green	Phase	16	0	Amber	Phase
31	K	Red	Phase	15	0	Green	Phase
30	K	Amber	Phase	14	Р	Red	Phase
29	K	Green	Phase	13	Р	Amber	Phase
28	L	Red	Phase	12	Р	Green	Phase
27	L	Amber	Phase	11	N/A	N/A	N/A
26	L	Green	Phase	10	N/A	N/A	N/A
25	L	Green	Phase	9	N/A	N/A	N/A
24	M	Red	Phase	8	N/A	N/A	N/A
23	М	Amber	Phase	7	N/A	N/A	N/A
22	М	Green	Phase	6	N/A	N/A	N/A
21	М	Green	Phase	5	N/A	N/A	N/A
20	N	Red	Phase	4	N/A	N/A	N/A
19	N	Amber	Phase	3	N/A	N/A	N/A
18	N	Green	Phase	2	N/A	N/A	N/A
17	0	Red	Phase	1	N/A	N/A	N/A

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 1 (North) Site Ref: 7100

I/O - DFM Group Timings

nput Group	State	SETA	SETB	SETC	SETD		
Group 0	Active (Mins)	30	30	30	30	State	Min Max
	InActive (Hrs)	18	18	18	18	Active (Mins)	0 255
Group 1	Active (Mins)	10	10	10	10	InActive (Hrs)	0 233
	InActive (Hrs)						
Group 2	Active (Mins)	10	10	10	10		
	InActive (Hrs)						
Group 3	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 4	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 5	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 6	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 7	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		

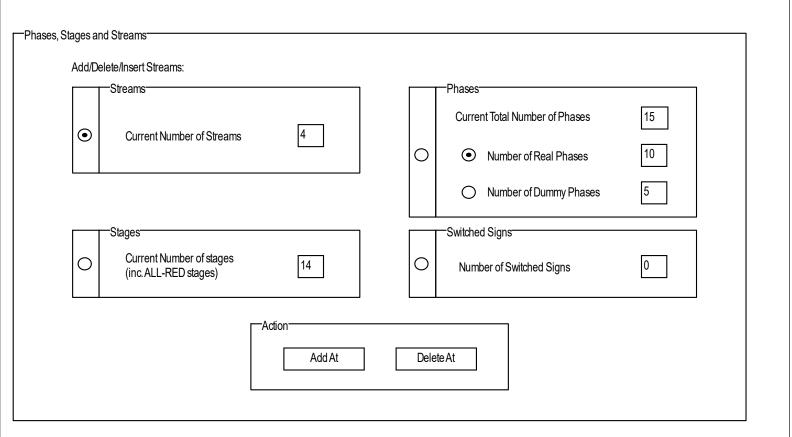
Index

		HIGEX
1	Genera	l Junction Data
		Administration
		Phases, Stages and Streams
		Facilities/Modes Enabled and Mode Priority Levels
		Phases in Stages
2	1.5 Phases	Stages in Streams
2	2.1	Phase Type and Conditions
	2.2	Opposing and Conflicting Phases
		Timings
		2.3.1 Phase Minimums, Maximums, Extensions, Ped Leaving Periods
		2.3.2 Phase Intergreen Times
		2.3.3 Intergreen Handset Limits
		2.3.4 Phase Timing Handset Ranges
		VA Demand and Extend Definitions
		Phase Internal/Revertive Demands
	2.0	Pelicans, Puffins and Toucans 2.6.1 Phase - On Crossing and Kerbside Detector Definitions
		2.6.2 Stream - Pelican/Puffin/Toucan Times
		2.6.3 Phase - Pelican, Puffin and Toucan Times
		2.6.4 IO and Link - Pelican/Puffin/Toucan Times
		2.6.5 Pelican, Puffin, Toucan Pushbutton/Kerbside Associations
3	_	Movements
	3.1	Stages - Prohibited, Alternative, Ignored Moves (No configuration data to print)
	3.2	• • • • • • • • • • • • • • • • • • •
	3.4	Phase Delays (No configuration data to print) Intergreen Delays (No configuration data to print)
4		and Facilities - Detailed
-		Fixed Time
	4.2	Cableless Linking
		4.2.1 CLF - Plan(s)
		4.2.2 CLF - Base Time
	4.3	4.2.3 CLF - Demand Dependent Moves UTC and MOVA
	4.0	4.3.1 UTC General Data
		4.3.2 UTC Control and Reply Data Format
		4.3.3 UTC Data Definitions
		4.3.3.1 UTC Phase Demand and Extend Definitions
		4.3.3.2 UTC Stage and Mode Data Definitions
		4.3.3.3 UTC Demand Dependent Forces 4.3.4 MOVA Stages
		4.3.5 UTC and MOVA Detectors
	4.4	Master Time Clock
		4.4.1 MTC - Time Switch Parameters
		4.4.2 MTC - Time Switch Parameters Array
		4.4.3 MTC - Day Type
	4.5	4.4.4 MTC - Timetable
	4.5	Integral Lamp Monitoring 4.5.1 LMU - General
		4.5.2 LMU Sensors (Built-in)
		4.5.3 LMU Sensors (External) for Regulatory Signs
		4.5.4 LMU Sensor Load Types
		4.5.5 RLM Additional Intergreens
		4.5.6 RLM Phase Inhibits
	4.6 4.7	Hurry Call Manual
	4.7	4.7.1 Manual Panel
		4.7.2 Manual Mode - Optional Phases Appearance (No configuration data to print)
	4.8	Reserve State
5		oning Data
		Special Conditioning
		Special Conditioning Timers
6		Fault Log Flags Instructions
7	I/O	111301100110
	7.1	Call Cancel

- 7.3 Aspect Drives (ELV Controllers)
 7.4 I/O DFM Group Timings
 7.5 Switched Signs (No configuration data to print)

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection


Administration

General Specifications			
Customer Name	National Highways - Area 7	Customer Order No.	857993755
Intersection/ General Description	M1 Junction 15, Controller 2 (South) Site Ref. 7101	Controller/ Serial Number	7101
		S.T.S. /EM Number	NN0015 Issue 5
Controller	New • Modification	Equipment Installation by	Yunex Traffic
Area Specifications/ Customer Drawings		Slot Cutting by	
Specification Section		Civil Works by	
Contract/Tender Ref:		Customer's Engineer	
Quotation No.		Telephone Number	
Works Order No.	857993755	•	
Signal Company Use Only Signal Engineer Controller Options Hardware ST950 ELV ST950/ST900/ST750 Serie	(Yunex Traffic) Firmware Type and Issue 460	bel as >) PROM Number Configuration (16260 PROM Variant 15 Check Value FC DB 40 7 Other Options
Cabinet/Rack	Cabinet Coulons Kit Type Optic	ons • UK-Std •	Non-UK O
Cabinet/Rack Variant	Grey Cuckoo Opt	ions None	Gemini Unit Fitted
Mains Supply	230 Volts 50 Hz Dimming	27.5 V	Answer Issue 0
Peak Lamp Current Average Lamp Power	1 Amps Low Inrush Transforme	r 🔽	Edit Issue 15
Total Average Power	230 Watts		Date Created 10/08/2022
Power feed fuse rating: regu	iires 30 Amp minimum for controller, 15 Amp minimu	m for pelican/lightly loaded co	ntroller

Engineer : (Yunex Traffic)

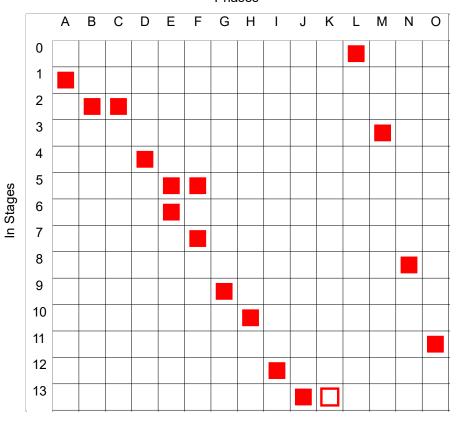
Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phases, Stages and Streams

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

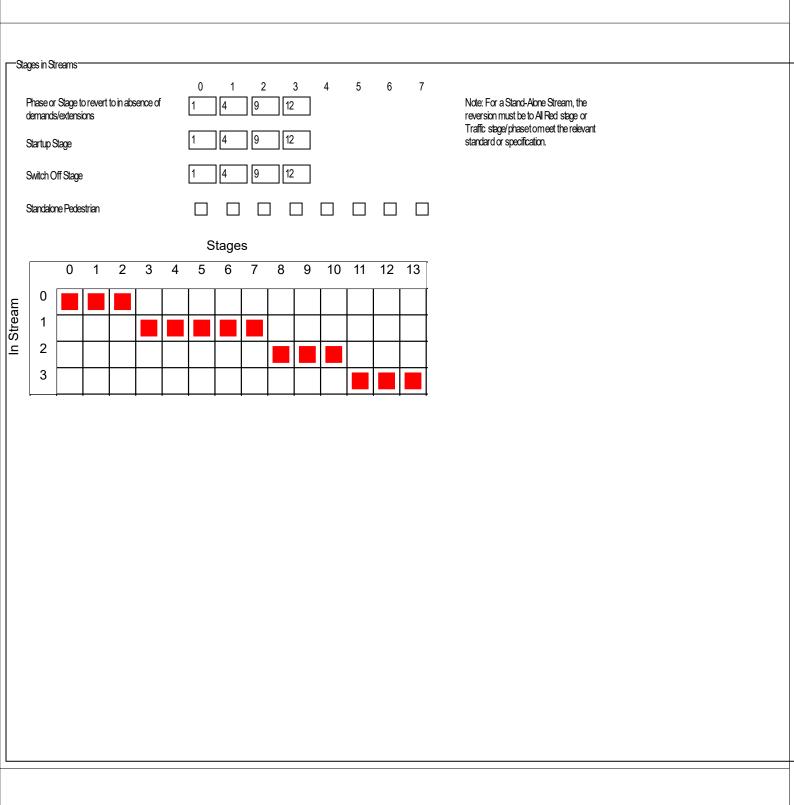
Facilities/Modes Enabled and Mode Priority Levels


Facilities UTC Serial/Internal UTMC OTU Free-standing OTU	✓ Master Time Clock ☐ Holiday Clock ✓ FT To Current MAX ☐ Linked Fixed Time	✓ Lamp Monitoring ✓ RED Lamp Monitoring ✓ Pelican/Puffin/Toucan Standalone Manual	□ ExtendAll Red □ Non-UK □ Speed Measurement □ Ripple Change □ □ □ DVI35 □ Download To Level 3
12 Starting Intergreen			
Mode Priority			Configuration Complexity
☐ Part Time ☐ Emergency Vehides ☑ Hurry Call	1 2 3 4 5 6 7 O O O O O O O O O O O O O O O	8 9 10 11 12 13 O O O O O O O O O O O	C Low
☐ LRT☐ Priority Vehide	0000000		Default PROM data file
Manual Control Manual Step On Selected FT or VA or CLF UTC MOVA Mode CLF (Non-Base Time) CLF (Base Time) Vehicle Actuated			Correspondence Monitoring to inc. Reds Switched Signs Flash Rate (ms) 400 Off 400 On
Fixed Time			

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phases in Stages



Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Stages in Streams

Works Order : 857993755 : NN0015 **EM Number**

Engineer (Yunex Traffic)

: M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Phase Type and Conditions

	Phases Ato P	0	Improved GAAppea	rance		Manual	Output Alloca	ation	abla	
Phase	Title	Туре	Арр. Туре	Term. Type	Assoc. Phase	No. of D	rive Outputs "A"	"G"	H/W Fail Flash	Critical Phase
Α	GYRATORY X M1 OFF SLIP	0-UKTraffic	0	0 - E		2	2	2		
В	M1 OFF SLIP RIGHTTURN	0-UKTraffic	0	0 - E		1	1	1		
С	M1 OFF SLIP LEFT TURN	0-UKTraffic	0	0 - E		1	1	1	Ī	
D	GYRATORY X NORTHAMPTON ROAD	0-UKTraffic	0	0 - E		1	1	1	Ī	
E	NORTHAMPTON ROAD AHEAD	0-UKTraffic	0	0 - E		2	2	2		
F	NORTHAMPTON ROAD LEFTTURN	0-UKTraffic	0	0 - E		2	2	2		
G	INTERNAL GYRATORY FROM NORTHAMPTON ROAD	0-UKTraffic	0	0 - E		1	1	1	Ī	
Н	INTERNAL GYRATORYRIGHT FROM M1 SLIP ROAD	0-UKTraffic	0	0 - E		1	1	1		
I	M1 ON SLIP ROAD	0-UKTraffic	0	0 - E		1	1	1		
J	PED XM1 ON SLIP ROAD	3 - UK Near Side Pedestrian	0	0 - E		1	1	2		
K	ALL RED DUMMYHOLD STAGE 13	2 - UK GreenArrow	0	0 - E]			_	
L	ALL RED DUMMYSTREAM 0	2 - UK GreenArrow	0	0 - E		ĺ				
М	ALL RED DUMMYSTREAM 1	2 - UK GreenArrow	0	0 - E]				
N	ALL RED DUMMYSTREAM 2	2 - UK GreenArrow	0	0 - E		Ī				
0	ALL RED DUMMYSTREAM 3	2 - UK GreenArrow	0	0 - E		Ī				

¹⁾ App Types: 0 = Always Appears, 1 = Appears if dem'd prior to interstage, 2 = If dem'd, 3 = If dem'd before end of window time
2) Term Types: 0 = Term's at end of stage, 1 = Term's when Assoc phase gains R.O.W, 2 = Term's when Assoc phase loses R.O.W.
3) The HW Fail Flash fields are for information only on all but ST900 ELV and ST950 ELV Controllers. For other controllers, physical switches or links (etc.), select which aspects flash; these need to be set up manually.

Works Order : 857993755 : NN0015 EM Number

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Opposing and Conflicting Phases

Initialise

г	Selec	t Strean	n(s) To (Configu	·e											
		Al	(0) 10		O 1	() 2	C	3	0		0		0	(0
[✓ Am	iber Cor	flict Mor	nitoring												
							-	То Р	hase)						
		Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0
	Α		Со	Со									0			
	В	Со		0									0			
	С	Со	0										0			
	D					Со	Со							0		
	Ε				Со		0							0		
ë	F				Со	0								0		
From Phase	G								Со						0	
rom	Η							Со							0	
正	I										Со	0				0
	J									Со		0				0
	K									0	0					0
	L	0	0	0												
	M				0	0	0									
	N							0	0							

0

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phase Minimums, Maximums, Extensions, Ped Leaving Periods

—Phase Mi	inimums, Maximum:	s, Extensions, Ped Lea	ving Periods								
						(Phases Ato	Р	0		
Phase	Min Green	Min Ped Clr	- Extensions	Maximums——							
Α	7	0	0.0	A B	C 3 47	D 47	E] 0	F 0	G 0	H 0	Pre-timed
В	7	0	0.0	18 18	3 19	19	0	0	0	0	
С	7	0	0.0	18	19	19	0	0	0	0	
D	7	0	0.0	51 5	45	45	0	0	0	0	
E	7	0	0.0	15 19	5 21	21	0	0	0	0	
F	7	0	0.0	15 19	5 21	21	0	0	0	0	
G	7	0	0.0	39 3		41	0	0	0	0	
Н	7	0	0.0	27 2		25	0	0	0	0	
<u> </u>	7	0	0.0	25 2	25	25	0	0	0	0	
J	5	3	0.0	0 0	0	0	0	0	0	0	
K	3	0	0.0	0 0	0	0	0	0	0	0	
L	10	0	0.0	0 0		0	0	0	0	0	
М	10	0	0.0	0 0	0	0	0	0	0	0	
N	10	0	0.0	0 0		0	0	0	0	0	
0	10	0	0.0	0 0	0	0	0	0	0	0	
Note: For S	Standalone Streams	see Help for use of Ma	x Sets.								

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phase Intergreen Times

Select Stre	am(s) To Conf	igure							
○ AI	O 0	O 1	O 2	O 3	\circ	0	0	0	

Note: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PIT, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below.

To Phase

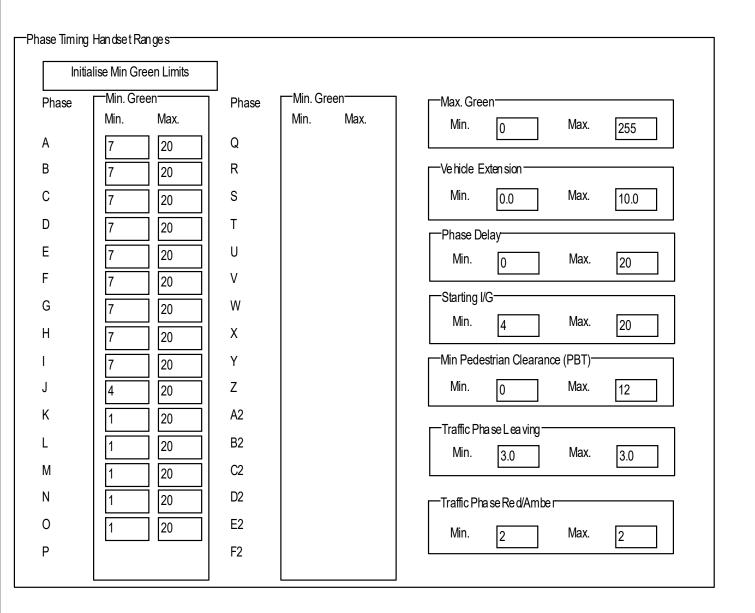
	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
Α		8	10									3			
В	8											3			
С	7											3			
D					5	7							3		
E				8									3		
F				7									3		
G								6						3	
Н							6							3	
I										7	3				3
J									5						3
K									2						3
L	2	2	2												
М				2	2	2									
N							2	2							
0									2	2	2				

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Intergreen Handset Limits

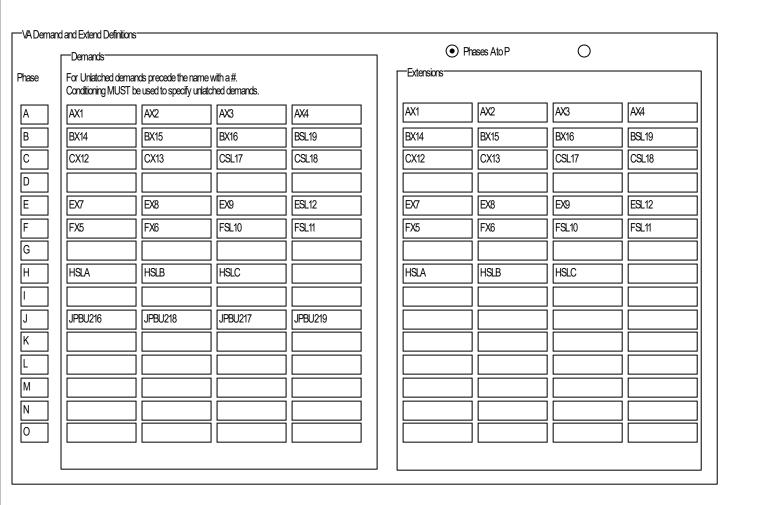
HIGH 30 Copy Intergreen Values


To Phase

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
Α		7	9									3			
В	7											3			
С	6											3			
D					5	6							3		
E				7									3		
F				6									3		
G								5						3	
Н							5							3	
I										6	3				3
J															3
K									2						3
L	2	2	2												
М				2	2	2									
N							2	2							
0									2	2	2				

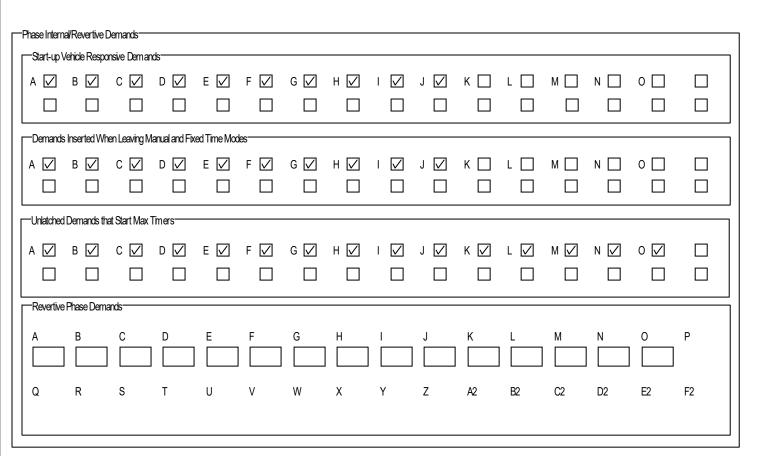
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


Phase Timing Handset Ranges

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


VA Demand and Extend Definitions

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phase Internal/Revertive Demands

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phase - On Crossing and Kerbside Detector Definitions

On Cross	ing and Kerbside Inpu	ut Definitions			• F	Phases Ato P	0	
Phase	On Crossing			7 [-Kerbside			
A B C D E F G H I K K	JOCD218	JOCD217				JKSD219		
M N O								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Stream - Pelican/Puffin/Toucan Times

Pedestrian Enable VA Mode (PEV)				Stream	ms							
0 1		2	3			4		5		6		7
edestrian All Red Times (Vehicle to Pec	lestrian)										Handset Rar	nge Limits
otreams			0	1	2	3	4	5	6	7	Min	Max
PAR n 0) VA Gap Change												
PAR n 1) VA Max Change												
PAR n 2) FVP Change											0	0
PAR n 3) UTC Change												
PAR n.4) Local Link Change												
Pelican Intergreen times												
PITn0) Veh Red/Ped Flash Green											0	0
PIT n 1) Veh Flash Amber/Ped Flash G	reen										0	0
PIT n 2) Veh Flash Amber/Ped red											0	0
PIT n 3) Veh Flash Amber/Ped Red Qu	iescent											0

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Phase - Pelican, Puffin and Toucan Times

nase	PDD Ped Demand Delay	PDX Ped Demand Hold	CMX Clearance Maximum	CDY 0 Clearance Delay Gap Change	CDY 1 Clearance Delay Max Change	CRD Clearance Minimum Red	Phases Ato P	0
A	0	0.0	0	0	0	0		
В	0	0.0	0	0	0	0		
С	0	0.0	0	0	0	0		
)	0	0.0	0	0	0	0	П	
	0	0.0	0	0	0	0		
=	0	0.0	0	0	0	0		
3	0	0.0	0	0	0	0		
1	0	0.0	0	0	0	0	Pedestrian Handset Range Limits	
	0	0.0	0	0	0	0		MIN MAX
	0	0.0	8	0	0	0	Demand Delay PDD	0 5
(0	0.0	0	0	0	0	Demand Hold PDX	0.0 5.0
	0	0.0	0	0	0	0		
M	0	0.0	0	0	0	0	Clearance Maximum CMX	0 30
N	0	0.0	0	0	0	0	Clearance Delays CDY 0 and CDY1	0 5
)	0	0.0	0	0	0	0	Clearance Minimum Red CRD	0 5

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

IO and Link - Pelican/Puffin/Toucan Times

Streams	0	1	2	3	4	5	6	7
-Computer Control					<u> </u>			
PV								
Window Time UIE								
-Local Link								
PV1								
Link Delay Time LKD								
Link Window Time LKW								
Link Override Time LKO								
Kerbside Mat Test Output								

Engineer : (Yunex Traffic)

ntersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Pelican, Puffin, Toucan Pushbutton/Kerbside Associations

Pelican, Puffin, Toucan Pushbutton/Kerbside Associations			
Phase Demand KBS	Phase Demand KBS	Phase Demand KBS	Phase Demand KBS
0 J JPBU216 JKSD218	16	32	48
1 J JPBU218 JKSD218	17	33	49
2 J JPBU217 JKSD219	18	34	50
3 J JPBU219 JKSD219	19	35	51
4	20	36	52
5	21	37	53
	22	38	54
7	23	39	55
8	24	40	56
9	25	41	57
10	26	42	58
11	27	43	59
12	28	44	60
13	29	45	61
14	30	46	62
15	31	47	63
		Note: Anya ssocia tion pushed of the screen will have	ve any previous association blanked.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Stage Internal Demands/Pedestrian Window Times

-Stage I							mes-															
	_		Respons		emands			4		_				0	0	40	44	40	40			
0		1		2		3		4		5	6		1	8	9	10	11	12	13			
Der	nands Ir	nserte	d Wher	n Leav	ring Mar	nual ar	nd Fixed	d Time	e Modes	5												
0		1		2		3		4		5	6		7	8	9	10	11	12	13			
Unk	atched [Demar	nds that	Start	Maxim	um Tir	mers-															
0		1	~~··	2		3		4	abla	5	6	$ \sqrt{} $	7	8	9	10	11	12	13			
-Win	dow Tin	nes																				
0		1		2		3		0		5	6		7	8	9	10	11	12	13	14	15	
16		17		18		19		20		21	22		23	24	25	26	27	28	29	30	31	
Exc	eptional	Stage	s——																			
0		1		2		3		4		5	6		7	8	9	10	11	12	13			

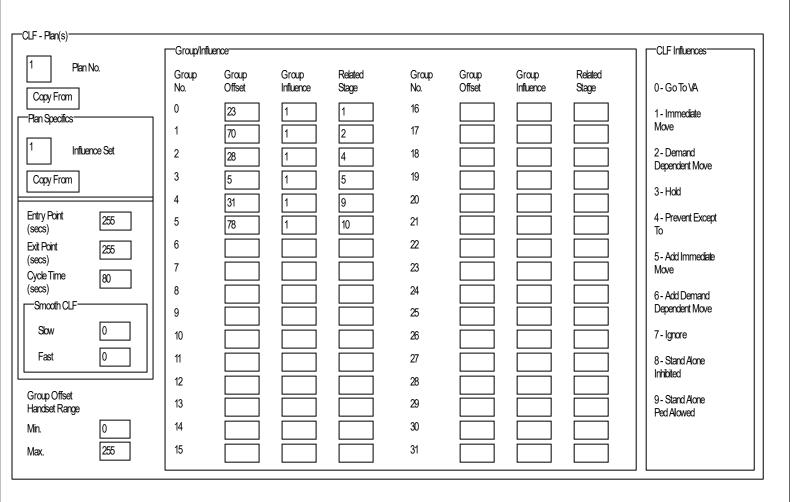
Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Phase Delays

─Phase De	elays —									
Phase Delays 0-29		С) Phase Delay	rs 30-59	O Phase	Delays 60-8	39 (O Phase Delays 90-119		
No.	Delay Phase	On Change from Stage	To Stage	By (X) Seconds	No.	Delay Phase	On Change from Stage	To Stage	By (X) Seconds	
0	F	5	4	0	15 16				0	
2				0	17				0	
3				0	18				0	
5				0	19 20				0	
6				0	21				0	
7				0	22				0	
8				0	23				0	
9				0	24				0	
10				0	25 26				0	
12				0	27				0	
13				0	28				0	
14				0	29				0	

Engineer


(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Fixed Time

Fixed Time Stage Moves & Times	(Not FixedT	me to Curre	ent Max)												
Current Stage Next Stage Time	0 1 0	1 2 0	2 1 0	3 4 0	4 5 0	5 4 0	6 7 0	7 6 0		the St	Time mod	e maybe us s and Times ixed Time is	section sho	ould always	te, therefore, be configured
Current Stage Next Stage Time	8 9 0	9 10 0	10 8 0	11 12 0	12 13 0	13 12 0	14	15							
Current Stage Next Stage	16	17	18	19	20	21	22	23							
Time															
Current Stage Next Stage	24	25	26	27	28	29	30	31							
Time															
Phases Demanded an	nd Extended u	nder Fixed 7	Fimeto Curre	nt Max.											
Demand Extend	_A ☑ ☑ _Q [В	S [F V	G ☑ W	х [Y [J D Z	K	L 	M	N	o □ □ ₩ [P
Demand Extend															

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

: 857993755 Works Order EM Number : NN0015

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

CLF - Plan(s)									
	Group/Influ	ience							CLF Influences
2 Plan No.	Group	Group	Group	Related	Group	Group	Group	Related	
Copy From	No.	Offset	Influence	Stage	No.	Offset	Influence	Stage	0 - Go To VA
Plan Specifics	0	23	1	1	16				1 - Immediate
	1	70	1	2	17				Move
2 Influence Set	2	28	1	4	18				2 - Demand
Copy From	3	5	1	5	19				Dependent Move
	4	31	1	9	20				3- Hold
Entry Point 255	5	78	1	10	21				4 - Prevent Except
(secs)	6	[70]			22				To
Exit Point 255 (secs)	7				23				5 - Add Immediate
Cycle Time 80									Move
(secs)	8				24				6 - Add Demand Dependent Move
	9				25				
Slow 0	10				26				7 - Ignore
Fast 0	11				27				8 - Stand Alone
	12				28				Inhibited
Group Offset Handset Range	13				29				9 - Stand Alone Ped Alowed
Min.	14				30				FacAlowai
Max. 255	15				31				

: 857993755 Works Order EM Number : NN0015

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

F - Plan(s)	Group/Influ	uence .							CLF Influences
Plan No.	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0-GoToVA
Copy From Ian Specifics	0	23	1	1	16				1 - Immediate Move
Influence Set	1 2	70	1	4	17 18				2 - Demand
Copy From	3	5	1	5	19				Dependent Move
ntry Point 255	4	31	1	9	20 21				3 - Hold 4 - Prevent Except
secs) 255	5 6	78	1	10	22				To
secs) ycle Time 80	7				23				5 - Add Immediate Move
secs)	8				24 25				6 - Add Demand Dependent Move
Slow 0	10				26				7-Ignore
Fast 0	11				27				8 - Stand Alone Inhibited
roup Offset andset Range	12 13				28 29				9 - Stand Alone
in. 0	14				30				Ped Allowed
lax. 255	15				31				

: 857993755 Works Order EM Number : NN0015

Engineer

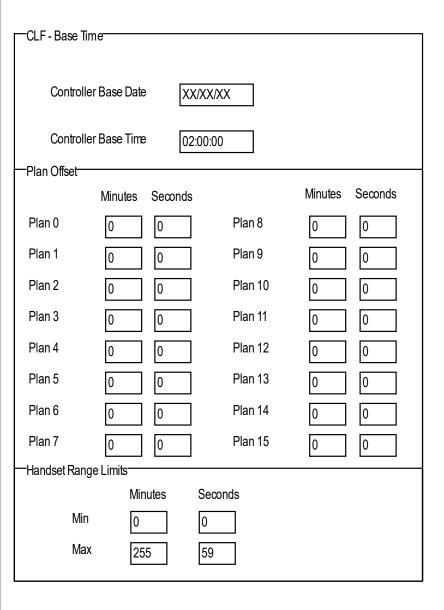
(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

	Group/Influ	uence .							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
n Specifics	0	23	1	1	16				1 - Immediate Move
_	1	70	1	2	17				Wove
Influence Set	2	28	1	4	18				2 - Demand Dependent Move
copy From	3	5	1	5	19				
	4	31	1	9	20				3- Hold
ry Point 255	5	78	1	10	21				4 - Prevent Except To
Point 255	6				22				5 - Add Immediate
cs)	7				23				S - Add Immediate Move
cle Time 80	8				24				O Add Dawn
mooth CLF	9				25				6 - Add Demand Dependent Move
Slow 0									
	10				26				7 - Ignore
Fast 0	11				27				8 - Stand Alone
	12				28				Inhibited
oup Offset	13				29				9 - Stand Alone
ndset Range	14				30				Ped Allowed
. 0									
к. 255	15				31				

: 857993755 Works Order EM Number : NN0015

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection


CLF - Plan(s)

Plan No	Group/Influ	uence							CLF Influences
Plan No. Copy From	Group No.	Group Offset	Group Influence	Related Stage	Group No.	Group Offset	Group Influence	Related Stage	0 - Go To VA
an Specifics	0	23	1	1	16				1 - Immediate Move
Influence Set	2	0	1	2	17 18				2 - Demand
Copy From	3	20 55	1	6	19				Dependent Move
	4	70	1	7	20				3-Hold
try Point 255	5	25	1	9	21				4 - Prevent Except To
it Point 255	6	0	1	10	22				5 - Add Immediate
cle Time 76	7 8				23 24				Move
Smooth CLF	9				25				6 - Add Demand Dependent Move
Slow 0	10				26				7-Ignore
Fast 0	11				27				8 - Stand Alone Inhibited
pup Offset	12				28				9 - Stand Alone
ndset Range n. 0	13 14				29 30				Ped Allowed
x. 255	15				31				

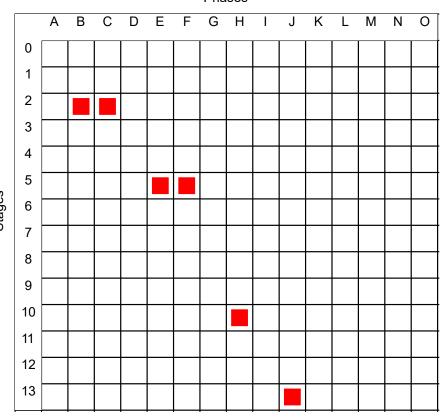
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

CLF - Base Time

Engineer : (Yunex Traffic)

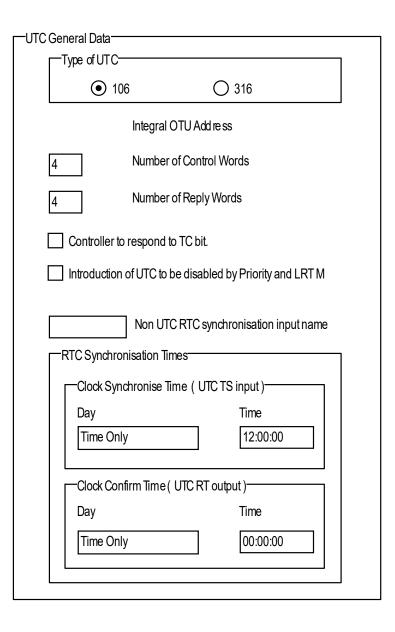
Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


CLF - Demand Dependent Moves

Clear Grid Data

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.


Phases

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

UTC General Data

: 857993755 Works Order EM Number : NN0015

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

UTC Control and Reply Data Format

Control Words	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8
Word 1	1F1	#1F2	1D2	1DX				
Word2				1MO				SO
Word3	TS	2F4	#2F5	2F6	2F7	2D5	2DX	2MO
Word4			3F9	#3F10	3D10	3DX	3МО	
Reply Words								
Word 1	1G1	1G2	1DR2	DF	RR	LF1	LF2	LF3
Word2	CF	LO	MC	1MR	1ML	1MF	1HC	SB
Word3	CC	2G4	2G5	2G6	2G7	2DR5	2HC	2MR
Word 4	2ML	2MF	3G9	3G10	3DR10	3HC	3MR	3ML
Word 5								
Word 6								
Word 7								
Word 8								
Word 9								
Word 10								
Word 11								
Word 12								
Word 13								
Word 14								

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

UTC Phase Demand and Extend Definitions

Earl	mands	ds, preceed the name	with a #	Extensions		
Cond	official and demands. Ditioning MUST be	e used to specify unlate	ched demands.			
1DX	(1DX		
1DX	(1D2		1DX	1D2	
1DX	(1D2		1DX	1D2	1
2DX	(2DX		
2DX	(2D5		2DX	2D5	
2DX	(2D5		2DX	2D5	1
3DX	(3DX]
3DX	(3D10		3DX	3D10	
						1
						1
						1
						1

Engineer : (Yunex Traffic)

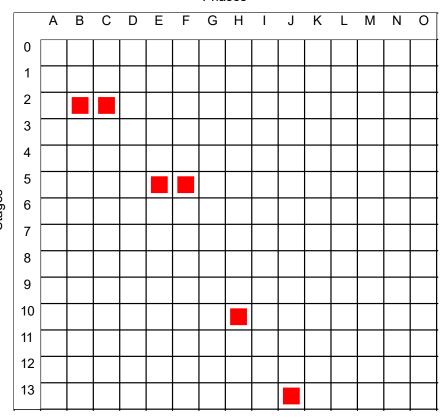
Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

UTC Stage and Mode Data Definitions

Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage Force Bit	Green Confirm Bit	Demand Confirm Bit	Manual Mode Operative:	
)				16			☐ G1/G2 ✓ RR	
1	1F1	1G1		 17				
2	#1F2	1G2	1DR2	18			Manual Mode Selected: ☐ G1/G2 ☑ RR	П
3				19			No Lamp Power, or Lamps Off d	ue to RLM or Part
4	2F4	2G4		= 20			Time:	
5	#2F5	2G5	2DR5	<u> </u>			☑ G1/G2 □	
3	2F6	2G6		72			Detector Fault:	
7	2F7	2G7		73				✓ DF
3				24			Normal NOT selected on the	
9	3F9	3G9		<u> </u>			Manual Panet: ☐ G1/G2 ☑ RR	П
10	#3F10	3G10	3DR10	<u> </u>				
11				27			RR Button Selected:	
12				28			☐ G1/G2 ✓ RR	
13				79			If UTC Reply Confirms are required	d for a Controller
14				30			Fault (CF) OR for separate MC ar Conditioning must be used.	nd RR replies,
15				31			OG INKO II IGITIUSI DE USCU.	

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


UTC Demand Dependent Forces

Clear Grid Data

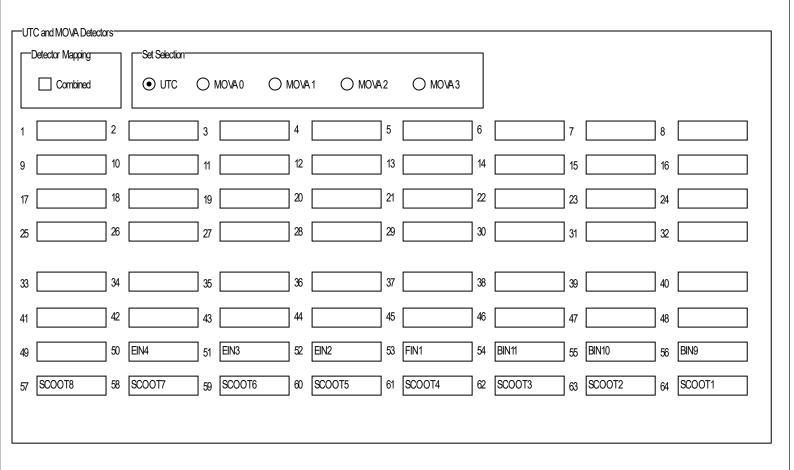
Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

Phases

Engineer

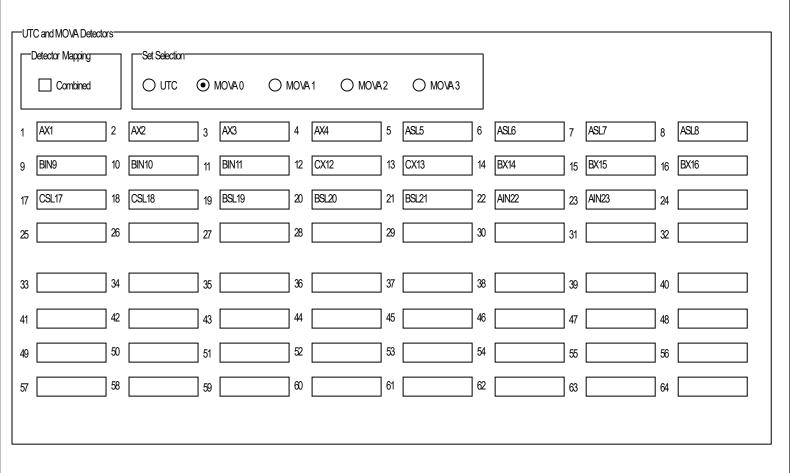
(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection


MOVA Stages

MOVA S	Stages					
	955					Mode Data Definitions
Stage	Force Bit	Green Confirm Bit	Stage	Force Bit	Green Confirm Bit	Manual Mode Operative: ☐ G1/G2 ☑ RR/CRB
0			16			
1	MOVA0F1	MOVA0CON1	17			Manual Mode Selected: ☐ G1/G2 ☑ RR/CRB
2	MOVA0F2	MOVA0CON2	18			
3			19			No Lamp Power, or Lamps Off due to RLM or Part Time:
4	MOVA1F1	MOVA1CON1	20			☐ G1/G2 ☐ RR/CRB
5	MOVA1F2	MOVA1CON2	21			Normal NOT selected on the Manual Panel:
6			22			G1/G2 RR/CRB
7			23			
8			24			RR Button Selected: ☐ G1/G2 ☑ RR/CRB
9	MOVA2F1	MOVA2CON1	25			
10	MOVA2F2	MOVA2CON2	26			
11			27			Report as UTC Mode
12			28			MOVA Control Timer (x10)
13			29			MOVA Deactivate Timer 2.0
14			30			MOVA Release Timer
15			31			
NOTE: If	a MOVA Kernel does	not map to the same num	bered strear	n (0-3), refer to the h	elp.	

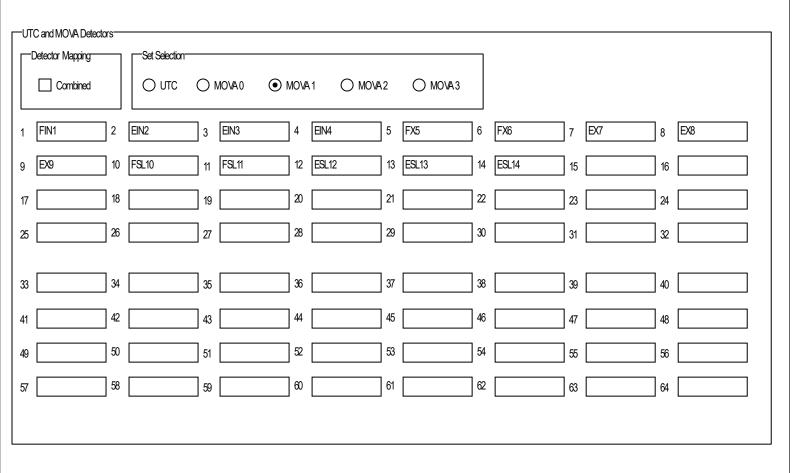
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


UTC and MOVA Detectors

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


UTC and MOVA Detectors

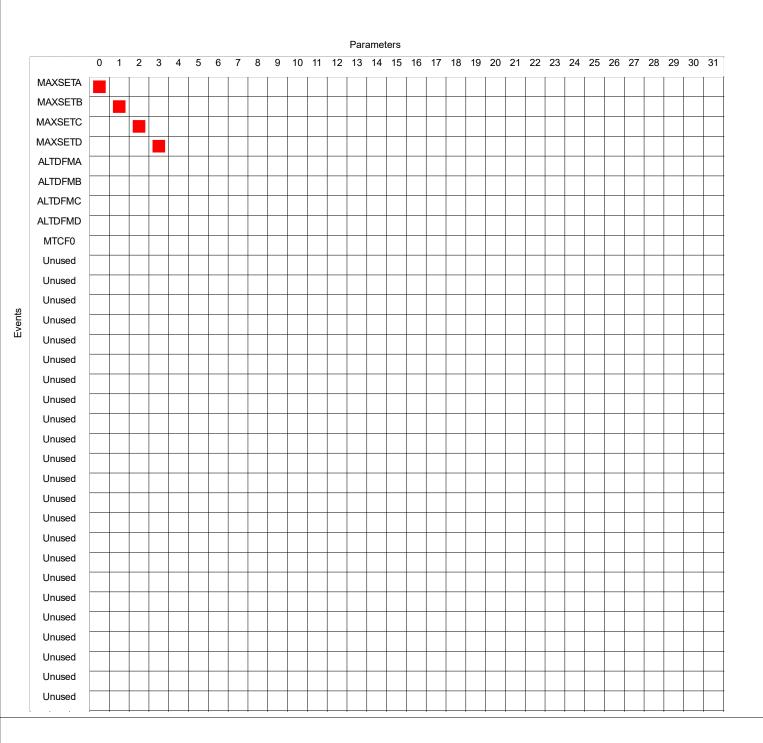
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

UTC and MOVA Detectors

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


MTC - Time Switch Parameters

	Туре	Event		Туре	Event	
0	Alternate Max	MAXSETA	16	No Action		
1	Alternate Max	MAXSETB	17	No Action		
2	Alternate Max	MAXSETC	18	No Action		
3	Alternate Max	MAXSETD	19	No Action		
4	Alternate DFM	ALTDFMA	20	No Action		
5	Alternate DFM	ALTDFMB	21	No Action		
6	Alternate DFM	ALTDFMC	22	No Action		
7	Alternate DFM	ALTDFMD	23	No Action		
8	Conditioning	MTCF0	24	No Action		
9	No Action		25	No Action		
10	No Action		26	No Action		
11	No Action		27	No Action		
12	No Action		28	No Action		
13	No Action		29	No Action		
14	No Action		30	No Action		
15	No Action		31	No Action		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

MTC - Time Switch Parameters Array

: 857993755 Works Order EM Number : NN0015

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

MTC - Day Type

─MTC - Da	у Туре—						
No.	Mon	Tue	Wed	Thu	Fri	Sat	Sun
0							
1							\checkmark
2	\checkmark						
3		\checkmark					
4			\checkmark				
5				\checkmark			
6					\checkmark		
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
10							
11							
12							
13							
14							
15							

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

MTC - Timetable

−MTC - Tir	TICIADIC		View Timetable Settings			
			⊙ 0 - 15	32 - 47	O 48 - 63	
No.	Day Type	Time	Description	Function Code	Plan/ Parameter	
0	9	07:00:00	MAX SETA	2	0	Function Codes:
1	9	09:30:00	MAX SET B	2	1	0 = Isolate From CLF
2	9	15:30:00	MAX SET C	2	2	1 = Introduce a CLF Plan
3	9	19:00:00	MAX SET D	2	3	2 = Introduce a Parameter
4	0	09:00:00	MAX SETA	2	0	(Combination of event swit
5	0	19:00:00	MAX SET D	2	3	3 = Selects an Individual e
6	1	09:00:00	MAX SETA	2	0	switch to be set
7	1	19:00:00	MAX SET D	2	3	4 = Selects an Individual e switch to be cleared.
8	0			0	0	
9	9	07:00:01	INTRODUCE CLF PLAN 1	1	1	
10	9	09:30:01	INTRODUCE CLF PLAN 2	1	2	
11	9	15:30:01	INTRODUCE CLF PLAN 3	1	3	
12	9	19:00:01	INTRODUCE CLF PLAN 4	1	4	
13	0	09:00:01	INTRODUCE CLF PLAN 1	1	1	
14	0	19:00:01	INTRODUCE CLF PLAN 2	1	2	
15	1	09:00:01	INTRODUCE CLF PLAN 1	1	1	

itches)

event

event

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

MTC - Timetable

MTC - Tim	netable———		View Timetable Se	ottings				
				•				
			O 0 - 15	● 16-31	O 32 - 4	7	O 48 - 63	
No.	Day	Time	Description			unction	Plan/	
	Туре	[12.22.21	[Code	Parameter	Function Codes:
16	1	19:00:01	INTRODUCE CLF PLA	N 2			2	i undidii dodds.
17	7	01:00:00	DISABLE THE CRB (II	FCFF0SET)	3	3	8	0 = Isolate From CLF
18	7	01:00:30	ENABLE THE CRB (IF	CFF0 SET)	4	1	8	1 = Introduce a CLF Plan
19	0				С)	0	2 = Introduce a Parameter
20	0)	0	(Combination of event switches)
21	0)	0	3 = Selects an Individual event switch to be set
22	0)	0	
23	0)	0	4 = Selects an Individual event switch to be cleared.
24	0				C)	0	
25	0)	0	
26	0				C)	0	
27	0)	0	
28	0)	0	
29	0)	0	
30	0)	0	
31	0)	0	

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

LMU - General

LMU - General			
Lamp Monitoring - LMU Vo	oltage —	7	
	48		
0	0		
Red Lamp Monitoring			
Max Red Bulb Wattage		First Red Lamp Fault Speed	0
RLF2 Cancels RLM	1 additional Intergreens	RLM Ad ditio na I Inte rg re en	ı Handset Limits————
RLF2 Only Cleared	l by RFL = 1	Minimum	Maximum
RLF1 Only Cleared	l by RFL = 1	0	[10]
Streams with Phase	BlackOut on RLF2		
	1 2 3		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

LMU Sensors (Built-in)

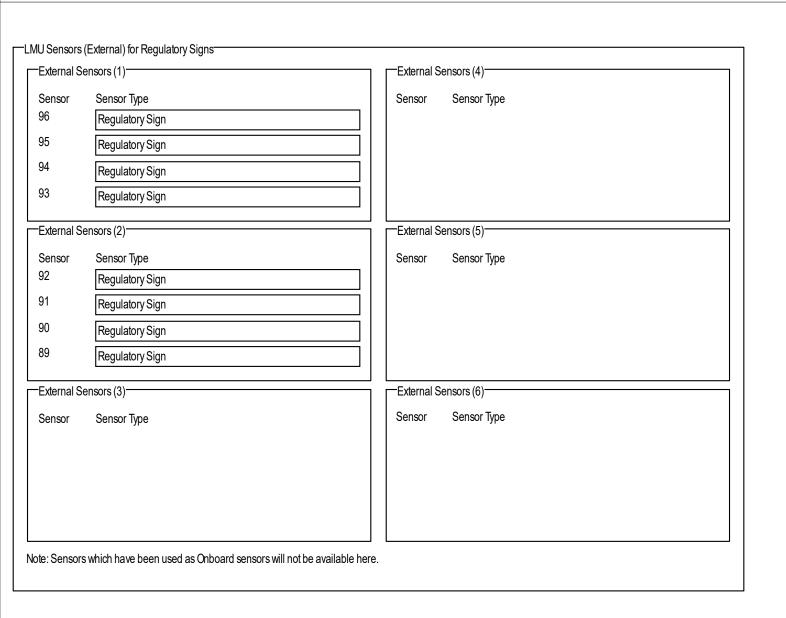
-LMU Sensors	s (Built-in)—							
		No. of LSLS 2	S cards fitted	HPU Connection 1				
Sensor Co	onfiguration Fo	or LSLS 1 (Cab	pinet 1)					
Phase	Aspect	Sensor#	Sensor Type		Phase	Aspect	Sensor#	Sensor Type
A	Red	1	As Seq.		E	Red	5	As Seq.
A	Red	1	As Seq.		E	Amber	5	As Seq.
A	Amber	1	As Seq.		E	Amber	5	As Seq.
A	Amber	1	As Seq.		E	Green	5	As Seq.
A	Green	1	As Seq.		E	Green	5	As Seq.
A	Green	1	As Seq.		F	Red	6	As Seq.
В	Red	2	As Seq.		F	Red	6	As Seq.
В	Amber	2	As Seq.		F	Amber	6	As Seq.
В	Green	2	As Seq.		F	Amber	6	As Seq.
С	Red	3	As Seq.		F	Green	6	As Seq.
С	Amber	3	As Seq.		F	Green	6	As Seq.
С	Green	3	As Seq.		G	Red	7	As Seq.
D	Red	4	As Seq.		G	Amber	7	As Seq.
D	Amber	4	As Seq.		G	Green	7	As Seq.
D	Green	4	As Seq.		Н	Red	8	As Seq.
E	Red	5	As Seq.		Н	Amber	8	As Seq.

Note: A (*) character next to a sensor number indicates that the sensor would also be available on the External sensors screen. Please be sure you wish to use these sensors here, as they will then become unavailable for Regulatory Signs.

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

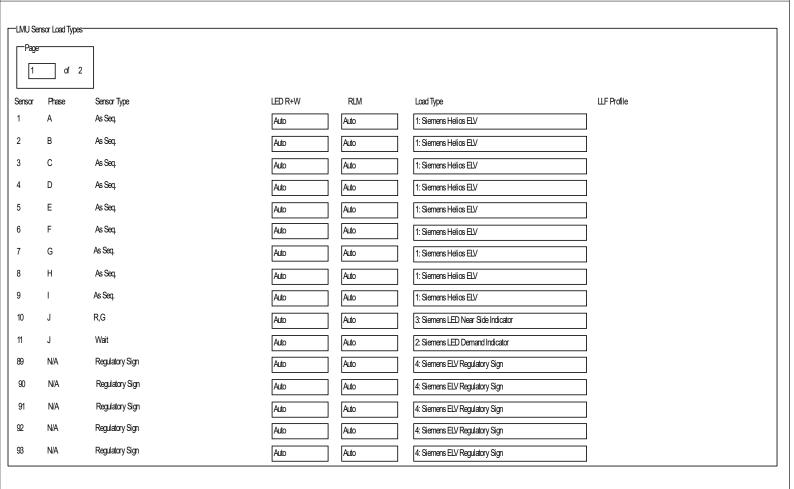
LMU Sensors (Built-in)


		No. of LSLS 2	G cards fitted	HPU Connection 1				
nsor Co	nfiguration Fo	or LSLS 2 (Cab	pinet 1)					
Phase	Aspect	Sensor#	Sensor Type		Phase	Aspect	Sensor#	Sensor Type
H	Green	8	As Seq.		N/A	N/A		
	Red	9	As Seq.		N/A	N/A		
	Amber	9	As Seq.		N/A	N/A		
	Green	9	As Seq.		N/A	N/A		
J	Red	10	R,G		N/A	N/A		
J	Amber	11	Wait		N/A	N/A		
J	Green	10	R,G		N/A	N/A		
J	Green	N/A]		 N/A	N/A		
√A	N/A	IN/A			N/A	N/A		
	N/A							
N/A					N/A	N/A		
N/A	N/A				N/A	N/A		
N/A	N/A				N/A	N/A		
N/A	N/A				N/A	N/A		
N/A	N/A				N/A	N/A		
N/A	N/A				N/A	N/A		
N/A	N/A				N/A	N/A		

then become unavailable for Regulatory Signs.

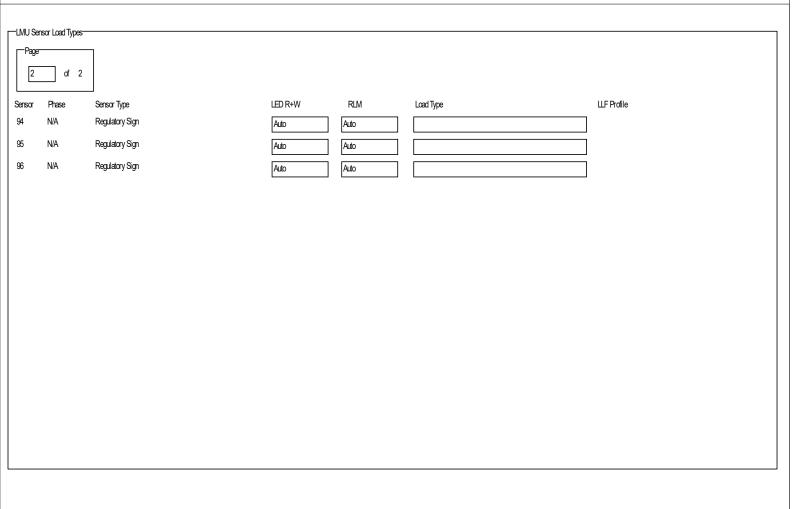
Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


LMU Sensors (External) for Regulatory Signs

Engineer : (Yunex Traffic)

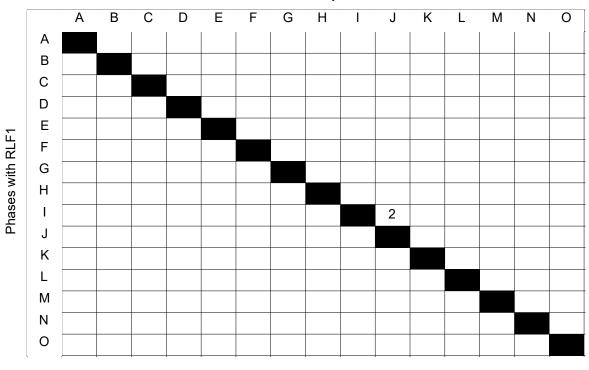
Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101


LMU Sensor Load Types

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

LMU Sensor Load Types

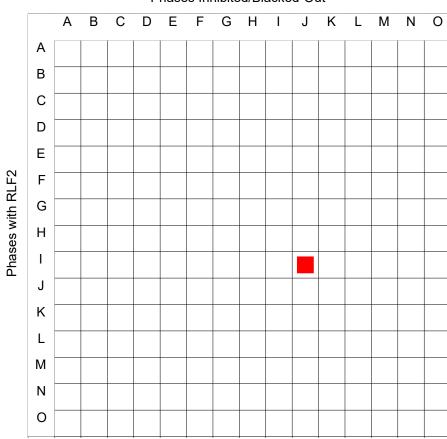


Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

RLM Additional Intergreens

Phases Delayed



Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

RLM Phase Inhibits

Phases Inhibited/Blacked-Out

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Hurry Call

Call							
Hurry Call	Stage Called	Call Input Name	Cancel Input Name	Confirm Output Name	Delay Time	Hold Time	Prevent Time
0	0	*SCRT10			0	1	0
1	3	*SCRT1			0	1	0
2	8	*SCRT2			0	1	0
3	11	*SCRT11			0	1	0
4	2	*SCRT3			0	20	180
5	10	*SCRT4			0	20	180
6	1	*SCRT7			0	20	180
7					0	0	0
Hurry Cal	Il Limit Values	Min. M	ax.				
Call	Delay	0 2	55				
Call	Hold	0 2	55				
Call	Prevent	0 2	55				

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Manual Panel

-Manual Panel-		-						
Stage Button:	s and LEDs							
Button No.	Title	Called Stage for Stream 0 1 2 3 4 5 6 7						
0	ALL RED							
1	GYRATORIES ONTO M1	1 4 9 12						
2	M1 OFF SLIP ROAD	2 4 10 12						
3	M1 OFF SLIP ROAD WITH PED	2 4 10 13						
4	NORTHAMPTON ROAD BOTH WAYS	1 5 9 12						
5								
6								
7								
General LED		Nanual Mode Enable						
	AUX1 AUX2 AUX3 AUX4 AUX5 (Hurry Call) (Higher Priority)	Always NOTE: For this to operate Special						
Conditioned		When Handset Plugged in (Note 1) Conditioning is required.						
—General Butti	ons Manual Signals On None SW1 SW2 SW3	When MND' Command Entered						
Momentary	☐ ☐ ☐ ☐ Immediate Signals On	Mode Select Switches Disabled						
Dim Override RR	♠ ↑ ↑ ↑	✓ VA						

: 857993755 Works Order : NN0015 EM Number

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Manual Mode - Optional Phases Appearance

Manual Mode - Optional Phases Appear ance-																
Never Appears	A O	В	С	D O	E	F	G O	Н	I О	J	K	L	М	N O	0	P
Demand Dependant	0	\circ	0	\circ	0	0	0	\circ	0	\circ	0	\circ	0	\circ	0	0
Always Appears	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
	Q	R	S	Т	U	٧	W	Χ	Υ	Z	A2	B2	C2	D2	E2	F2
Never Appears	0	0	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	0	\circ	\circ
Demand Dependant	0	\circ	0	\circ	0	0	0	\circ	0	\circ	\circ	\circ	0	\circ	0	0
Always Appears	0	\bigcirc	\cap	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Reserve State

Reserve State										
Entry	Stream	0	1	2	3	4	5	6	7	1
	Go to Switch Off Stage									
Timeout (seconds)	Part Time on App Failure or Timeout									Global Settings Use Defaults
Limited Time										,
Timeout (seconds)	Fixed Time Part Time Hold Stage	O	000	000	000	000	OO	OO	OO	Timeouts
After Timeout										0 = Use Firmware default
	Fixed Time Part Time Hold Stage	O	O O	OO	O O	OO	OO	O O	OO	

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
; MANUAL PANEL
    IFT (MODE0 EQL<6>+MODE1 EQL<6>+MODE2 EQL<6>) THN
         TRUE = MIL17
         IFT (MODE0 EQL<16>.MODE1 EQL<16>.MODE2 EQL<16>) THN
              CNDTMA93 = MIL17
              (\texttt{MODE0 EQL} < 16 \texttt{>} + \texttt{MODE1 EQL} < 16 \texttt{>} + \texttt{MODE2 EQL} < 16 \texttt{>}) \texttt{.} \texttt{CNDTMA83} = \texttt{MIL} 17
    END
     IFT (/CNDTMA93./CNDPRV93) THN
                                                                 ; SLOW PULSE UNIT
         RUN<93>
     IFT (/CNDTMA83./CNDPRV83) THN
                                                                 ; FAST FLASH UNIT
         RUN<83>
     END
; PERMANENT DEMANDS AND EXTENSIONS
   TRUE: :=+UCPHD
                                                                 ; PERMANENT DEMAND FOR PHASE D
         *=+EXOD
                                                                 ; PERMANENT EXTENSIONS FOR PHASE D
         *=+EXCD
   TRUE: :=+UCPHG
                                                                ; PERMANENT DEMAND FOR PHASE G
                                                                ; PERMANENT EXTENSIONS FOR PHASE G
         *=+EXOG
         *=+EXCG
; EXTRA DETECTOR INPUTS
     (ASL5 EXT+ASL6 EXT+ASL7 EXT+ASL8 EXT)::=+EXOA
                                                                ; ASL5,6,7 OR 8 DETECTORS TO DEMAND AND EXTEND PHASE A
                                                *=+LCPHA
     (BSL20_EXT+BSL21_EXT)::=+EXOD
                                                                 ; BSL20 OR 20 DETECTORS TO DEMAND AND EXTEND PHASE B
                              *=+LCPHD
     (\mathtt{ESL13}\_\mathtt{EXT} + \mathtt{ESL14}\_\mathtt{EXT}) ::= + \mathtt{EXOE}
                                                                 ; ESL13 OR 14 DETECTORS TO DEMAND AND EXTEND PHASE E
                              *=+EXCE
; PHASE REVERTIVE DEMANDS ACTIVE UNLESS IN MOVA MODE
    NOT (MODEO EQL<16>).FZTMEXA=+LCPHA
    NOT (MODEO EQL<16>).FZTMEXB=+LCPHB
    NOT (MODEO EQL<16>).FZTMEXC=+LCPHC
    NOT (MODE1 EQL<16>).FZTMEXD=+LCPHD
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
NOT (MODE1 EQL<16>).FZTMEXE=+LCPHE
    NOT (MODE1 EQL<16>) .FZTMEXF=+LCPHF
    NOT (MODE2 EQL<16>).FZTMEXG=+LCPHG
    NOT (MODE2 EQL<16>).FZTMEXH=+LCPHH
; MOVA PHASE CONFIRMS
    NOT (PHASEE) = MOVA1CON3
    NOT (PHASEF) = MOVA1CON4
; U.T.C. CONTROL AND REPLY BITS
; Inhibit MOVA on stream 0 when U.T.C. comms active and 1MO bit is 0
; NB: Requires mapping of TC to port csi.cond.out.1 bit 1 (conditioning bit ESPRXO) on the I/O Mapping Web Page
; CFF1000=1 -
                Simulate U.T.C. Comms (ESPRXO, ENABLE FOR EMULATOR TESTING)
; CFF20=1 -
                REMOVES THE REQUIREMENT FOR 1MO, 2MO OR 3MO ON STREAMS 0
; CFF21=1
                REMOVES THE REQUIREMENT FOR 1MO, 2MO OR 3MO ON STREAMS 1
; CFF22=1
                REMOVES THE REQUIREMENT FOR 1MO, 2MO OR 3MO ON STREAMS 2
    IFT (MANDOORSW+ESPRX0) THN
        FALSE = CFF1000
        FALSE = CFF1001
        FALSE = CFF1002
                                                 ; 4PX
        FALSE = CFF1006
                                                 ; SF1
        FALSE = CFF1007
                                                 ; SF2
        FALSE = CFF1008
        FALSE = CFF1009
                                                 ; SF4
    IFT /(ESPRX0+CFF1000) THN
                                                 ; U.T.M.C. NOT ONLINE, RESTART DELAY (3)
        RUN<31>
                                                  ; TIMER 31 SET TO 3 SECONDS - U.T.C. COMMS DELAY
    (ESPRX0+CFF1000)./(1MO+CNDTMA31+CFF20)=2SCRT200
    (ESPRX0+CFF1000)./(2MO+CNDTMA31+CFF21)=2SCRT201
    (ESPRX0+CFF1000)./(3MO+CNDTMA31+CFF22)=2SCRT202
    NOT (1MO) = 1MR
                                                 ; REPLY FOR 1MR CONFIRM
    NOT (2MO) = 2MR
                                                  ; REPLY FOR 2MR CONFIRM
    NOT (3MO) = 3MR
                                                 ; REPLY FOR 3MR CONFIRM
    NOT (MODEO EQL<16>)=1ML
                                                 ; MOVA ON CONTROL REPLY 1ML
                                                 ; MOVA ON CONTROL REPLY 2ML
    NOT (MODE1 EOL<16>) = 2ML
    NOT (MODE2 EQL<16>) =3ML
                                                  ; MOVA ON CONTROL REPLY 3ML
    NOT (MOVAOMF) =1MF
                                                 ; MOVA IN FAULT STATE REPLY 1MF
    NOT (MOVA1MF) = 2MF
                                                 ; MOVA IN FAULT STATE REPLY 2MF
    MOVA2MF = ESPTX0
                                                 ; MOVA IN FAULT STATE REPLY 3MF
    NOT (FLFCOM) = CF
    NOT (MODE 0 EQL<4>) = MC
    NOT(FLF55) = LF1
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
NOT (LMP1RED0+LMP1RED1+LMP1RED2+LMP1RED3) = LF2
    NOT (LMP2RED0+LMP2RED1+LMP2RED2+LMP2RED3) = LF3
    LMPON./FLF17 = LO
    LMPDIM = SB
    NOT((HRYSTAO EQL<1>+HRYSTAO EQL<2>+HRYSTAO EQL<3>)+(MINL+MINM+MINN+MINO))=1HC
    NOT((HRYSTA1 EQL<1>+HRYSTA1 EQL<2>+HRYSTA1 EQL<3>)+(MINL+MINM+MINN+MINO))=2HC
    NOT((HRYSTA2 EQL<1>+HRYSTA2 EQL<2>+HRYSTA2 EQL<3>)+(MINL+MINM+MINN+MINO))=3HC
    (HRYSTA3 EQL<1>+HRYSTA3 EQL<2>+HRYSTA3 EQL<3>)+(MINL+MINM+MINN+MINO) = ESPTX5
    (ESPRX1+CFF1001).CFF12./CCT05 = 2SCRT210
                                                ; 4PV - IF ENABLED BY CFF12=1 UNLESS MC IS TRUE
                                                ; 4PX - CONTROL OF THESE 2 EXTERNAL C/BITS IS NOT
    (ESPRX2+CFF1002)./CCTO5 = +LCPHJ
                                                 ; ACTIVE IF MC IS TRUE.
    STAGE12 = ESPTX1
                                                 ; 4GX
    VRDMNDJ = ESPTX2
                                                ; 4WC
                                                ; 4PC
    PHASEJ = ESPTX3
    / (LMPON.RLMMSKH) + FLF17 = ESPTX4
                                                 ; 4LO
    IFT (ESPRX1+CFF1001).CFF12 THN
        RUN<0>
    END
    (ESPRX6+CFF1006)::: = ESPTX6
                                                   ; SF1/SC1
                       * = MOVAODET41
                      * = MOVA1DET41
                      * = MOVA2DET41
    (ESPRX7+CFF1007):::=ESPTX7
                       * = MOVAODET42
                      * = MOVA1DET42
                      * = MOVA2DET42
    (ESPRX8+CFF1008)::: = ESPTX8
                       = MOVAODET43
                      * = MOVA1DET43
                      * = MOVA2DET43
    (ESPRX9+CFF1009)::: = ESPTX9
                       = MOVAODET44
                      * = MOVA1DET44
                      * = MOVA2DET44
    CCTO5 = ESPTX10
                                                 ; CLOSEO
    /ONBAT = ESPTX11
                                                 ; UPS
    /LOWBAT = ESPTX12
    /UPSWRN = ESPTX13
    /UPSFLT = ESPTX14
; BQA AND BQB HURRY CALLS FOR STAGES 2 AND 9
; ==
IFT CCTOO.NOT(2SCRT6).NOT(CNDTMA1) THN
    RIIN<6>
    RUN<1>
END
CCTO0=2SCRT6
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
IFT CCTO1.NOT(2SCRT7).NOT(CNDTMA1) THN
   RUN<7>
   RUN<1>
END
(CNDTMA6+CNDTMA7):=SCRT3
                  *=SCRT4
CCTO1=2SCRT7
; INPUTS FROM CONTROLLER 1 AQA,B,C AQ HURRY CALL STAGE 1
IFT CCTO2.NOT(2SCRT3) THN
   RUN<3>
;CNDTMA3=SCRT7
CCTO2=2SCRT3
IFT CCTO3.NOT(2SCRT4) THN
   RUN<4>
;CNDTMA4=SCRT7
CCTO3=2SCRT4
IFT CCTO4.NOT(2SCRT5) THN
   RUN<5>
(CNDTMA3+CNDTMA4+CNDTMA5) = SCRT7
CCTO4=2SCRT5
; MC1 OR MC2 MOTORWAY CLOSED INPUTS ACTIVE HURRY CALL ALL RED STAGES ON ALL STREAMS
    (MC1+MC2)=SCRT0
    NOT (MC1+MC2) = ROUGH0
    IFT CCTO5.NOT(1SCRT0) THN
        RUN<9>
        RIIN<10>
        RUN<11>
        RUN<12>
    CNDTMA9 = SCRT11
                                               ; Hurry Call Stage 11 - AR Stream 3
; Hurry Call Stage 0 - AR Stream 0
; Hurry Call Stage 3 - AR Stream 1
    CNDTMA10 = SCRT10
    CNDTMA11 = SCRT1
    CNDTMA12 = SCRT2
                                               ; Hurry Call Stage 8 - AR Stream 2
    CCTO5=1SCRT0
    (MINL+MINM+MINN)::::::=1SCRT1 ; PREVENT MOVES FROM ALL RED STAGES TILL ALL STREAMS HAVE RUN 10
                                     *=PRVST1 ; SECONDS ( MIN GREENS OF DUMMY PHASES TIMED OFF )
                                     *=PRVST2
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
*=PRVST4
                                   *=PRVST5
                                   *=PRVST6
                                   *=PRVST7
                                   *=PRVST9
                                   *+CCTO5=PRVST12
                                   *+2SCRT210=PRVST13
   CCTO5.NOT(CFF13)=+LCPHO
                                            ; IF MC ACTIVE INSERT DEMAND FOR PHASE O ( DISABLED BY CFF13=1 )
                                             ; TO ALLOW PED TO RUN
; MOTORWAY CLOSED INPUT ACTIVE PREVENT MOVA ON ALL STREAMS AND CALL CLF PLAN 5 TILL INPUT CLEARS
    IFT CCTO5 THN
                                                ; IF MC1 OR MC2 (CCTO5) BIT ACTIVE REQUEST CLF PLAN 5
       LOD <5>1REQPLN
    IFT NOT(CCTO5).NOT(1SCRT40) THN
                                                ; IF MC1 OR MC2 (CCTO5) BIT CLEARS REVERT TO CURRENT TIMETABLED
                                                 ; CLF PLAN
       RUN<13>
    END
    IFT CNDTMA13 THN
       LOD <1>1CALCKP
    NOT (CCTO5) =1SCRT40
    (MTCF0.CFF0) + (CCTO5) :::::+2SCRT200 = DISMOVA0
                            *+2SCRT201 = DISMOVA1
*+2SCRT202 = DISMOVA2
                                  = DISUTCO
                                       = DISUTC1
                                        = DISUTC2
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
; MOVA STREAM 0 MOVA LINKS
; LINK 10 (ST) FROM HSLA, B, C MOVAODET22
(HSLA+HSLB+HSLC) =MOVA0DET24
                                                ; HSLA, B OR HSLC ACTIVE SET MOVAODET24
; MOVA 8 LINKING STAGE CONFIRMS BETWEEN STREAMS
(NXTSTG0 EQL<1>)=MOVA0DET32
(NXTSTG0 EQL<2>)=MOVA0DET33
(NXTSTG1 EQL<4>)=MOVA0DET34
(NXTSTG1 EQL<5>)=MOVA0DET35
; EXTERNAL STAGE CONFIRMS FROM CONTROLLER 1
C1S2=MOVA0DET36
C1S5=MOVA0DET37
C1S8=MOVA0DET38
; MOVA Stream 0
MOVA10UT0=MOVA0DET63
MOVA2OUT1=MOVA0DET64
; MOVA Stream 1
MOVA0OUT0=MOVA1DET63
MOVA2OUT1=MOVA1DET64
; MOVA Stream 2
MOVA0OUT0=MOVA2DET63
MOVA1OUT1=MOVA2DET64
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

```
; MOVA STREAM 1
; LINK 6 (ST) FROM HSLA, B, C MOVADET15
(HSLA+HSLB+HSLC) =MOVA1DET15
                                                ; HSLA, B OR HSLC ACTIVE SET MOVA1DET15
; LINK 7 = (ST) FROM PEDESTRIAN J
VRDMNDJ=MOVA1DET16
                                                ; DEMAND FOR PEDESTRIAN PHASE J REPLY AS MOVA1DET16
; MOVA 8 LINKING STAGE CONFIRMS BETWEEN STREAMS
(NXTSTG0 EQL<1>)=MOVA1DET32
(NXTSTG0 EQL<2>)=MOVA1DET33
(NXTSTG1 EQL<4>)=MOVA1DET34
(NXTSTG1 EQL<5>)=MOVA1DET35
; EXTERNAL STAGE CONFIRMS FROM CONTROLLER 1
C1S2=MOVA1DET36
C1S5=MOVA1DET37
C1S8=MOVA1DET38
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning

```
; MOVA STREAM 2
; HSLA,B,C ACTIVE SETS MOVA2DET1,2,3
                                                       ; HSLA ACTIVE SET MOVA2DET1
(HSLA) =MOVA2DET1
(HSLB) =MOVA2DET2
                                                       ; HSLB ACTIVE SET MOVA2DET2
                                                        ; HSLC ACTIVE SET MOVA2DET3
(HSLC) =MOVA2DET3
; MOVA 8 LINKING STAGE CONFIRMS BETWEEN STREAMS
(NXTSTG0 EQL<1>)=MOVA2DET32
(NXTSTG0 EQL<2>)=MOVA2DET33
(NXTSTG1 EQL<4>)=MOVA2DET34
(NXTSTG1 EQL<5>)=MOVA2DET35
; EXTERNAL STAGE CONFIRMS FROM CONTROLLER 1
C1S2=MOVA2DET36
C1S5=MOVA2DET37
C1S8=MOVA2DET38
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning

```
; STREAM 3 PED LINKING
                                               ; PED J DEMANDS PHASE E AND F TO ALLOW PED LINK OPERATION
VRDMNDJ:=+LCPHE
       *=+LCPHF
IFT (TERMD) THN
   RIIN<20>
END
IFT CNDTER20 THN
                                                ; IF TIMER TERMINATED RUN THE INHIBIT RELEASE TIMER.
   RUN<21>
LMPON.NOT(CNDTMA21+2SCRT1).NOT(CFF5).NOT(CNDTMA0)=+PRVST13
                                               ; DEFAULT PED LINK UNLESS CFF5=1 IS SET
                                                ; IF RELEASE TIMER ACTIVE OR OVERRIDE TIMER EXPIRED OR
;
;
                                                ; LAMPS OFF THEN LIFT LINK.
IFT NOT (PRVST13) + (DTOROW) THN
                                                ; RUN THE OVERRIDE TIMER FROM LAST TIME LINK LIFTED.
   RUN<22>
CNDTER22=+2SCRT1
                                                ; SET 2SCRATCH BIT 1 IF OVERRIDE TIMER EXPIRES THIS
                                                ; RESET 2SCRATCH BIT 1 IF PHASE "D" GO'S TO R.O.W.
NOT (DTOROW) = .2SCRT1
IFT (TERME) THN
   RUN<23>
IFT CNDTER23 THN
                                                ; IF TIMER TERMINATED RUN THE INHIBIT RELEASE TIMER.
   RUN<24>
LMPON.NOT(CNDTMA24+2SCRT2).(CFF5).NOT(CNDTMA0)=+PRVST13
                                                ; ALTERNATE PED LINK IF CFF5=1 IS SET
                                                ; IF RELEASE TIMER ACTIVE OR OVERRIDE TIMER EXPIRED OR
                                                ; LAMPS OFF THEN LIFT LINK.
IFT NOT(PRVST13)+(ETOROW) THN
                                                ; RUN THE OVERRIDE TIMER FROM LAST TIME LINK LIFTED.
    RUN<25>
END
CNDTER25=+2SCRT2
                                                ; SET 2SCRATCH BIT 2 IF OVERRIDE TIMER EXPIRES THIS
                                                ; RESET 2SCRATCH BIT 2 IF PHASE "E" GO'S TO R.O.W.
NOT (ETOROW) = .2SCRT2
```

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning

; LINKING TO AND FROM CONTROLLER 1 NORTH

C1AQA=C1AQAOUT C1AQB=C1AQBOUT C1AQC=C1AQCOUT

(NXTSTG0 EQL<2>)=C2S2 (NXTSTG1 EQL<5>)=C2S5

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning Timers

n	ers										
0	-31]								
	Value	Min	Max	200ms	Description	No	Value	Min	Max	200ms	Description
	1	0	255		4PV ACTIVE LIF PED LINK	16		0	255		
	180	0	255	$\neg \Box$	BQA / BQB HURRY CALL O/RIDE	17		0	255		
		0	255			18		0	255		
	2	0	255		C1AQAHURRY CALL STAGE 1	19		0	255		
	2	0	255		C1AQB HURRY CALLSTAGE 1	20	5	0	255		STAGE 4 PED LINK DELAY
	2	0	255		C1AQC HURRY CALLSTAGE 1	21	2	0	255		STAGE 4 PED LINK WINDOW
	2	0	255		BQA HURRY CALLS STAGE 2	22	90	0	255		STAGE4 OVERIDE TIMER
	2	0	255		BQB HURRY CALLS STAGE 9	23	5	0	255		STAGE 5 PED LINK DELAY
		0	255			24	2	0	255		STAGE 5 PED LINK WINDOW
	2	0	255		MC HURRY CALLSTREAM 0	25	90	0	255		STAGE5 OVERIDE TIMER
	2	0	255	$\exists \Box$	MC HURRY CALLSTREAM 1	26		0	255		
	2	0	255	$\exists \Box$	MC HURRY CALLSTREAM 2	27		0	255		
	2	0	255	$\exists \Box$	MC HURRY CALLSTREAM 3	28		0	255		
	1	0	255	$\exists \Box$	CLEAR CLF PLAN 5 REQUEST	29		0	255		
	1	0	255	$\exists \Box$	CLEAR DISABLE CLF REQUEST	30		0	255		
		0	255	$\exists \Box$		31	3	0	255		U.T.C. COMMS DELAY

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning Timers

ecial Tim	Conditioning ers	Timers									
_	2-63]								
О	Value	Min	Max	200ms	Description	No	Value	Min	Max 200n	ns	Description
)		0	255			48		0	255] [
		0	255			49		0	255 C		
	0.6	0.6	31.8		FLASH ON TIMER	50		0	255		
	0.6	0.6	31.8		FLASH OFF TIMER	51		0	255		
		0	255			52		0	255		
		0	255			53		0	255		
		0	255			54		0	255		
		0	255			55		0	255 E		
		0	255			56		0	255 C		
		0	255			57		0	255 C		
		0	255			58		0	255		
		0	255	Ī 🗆		59		0	255		
		0	255			60		0	255		
		0	255			61		0	255		
		0	255			62		0	255		
		0	255	Ī		63		0	255		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Conditioning Timers

Time		Timers]								
1	Value	Min	Max	200ms	Description	No	Value	Min	Max	200ms	Description
		0	255			80		0	255		
		0	255			81		0	255		
		0	255			82		0	255		
		0	255			83	0.4	0.4	1		LED - Fast Flash
		0	255	Ī		84		0	255		
		0	255	Ī 🗆		85		0	255		
		0	255			86		0	255		
		0	255			87		0	255		
		0	255			88		0	255		
		0	255			89		0	255		
		0	255			90		0	255		
		0	255	Ī 🗆		91		0	255		
		0	255			92		0	255		
		0	255			93	3	2	5		LED - Slow Pulse
		0	255			94		0	255		
		0	255	Ī 🗆		95		0	255		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Fault Log Flags

				0 1] [0 1		Note:
Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Fault No	Cond Flag	Act Flag	Cond Flag - If a fault occurs which sets a fault
0	$\overline{\vee}$		16			32			48			log flag that has been checked
1	\checkmark		17			33	\checkmark		49	\checkmark		for this Cond flag option then a flag will be set that can be read in
2	\checkmark		18	\checkmark		34	\checkmark		50	\checkmark		Conditioning.
3	\checkmark		19	\checkmark		35	\checkmark		51	\checkmark		
4	\checkmark		20	\checkmark		36	\checkmark		52	\checkmark		Act Flag -
5	\checkmark		21	\checkmark		37	\checkmark		53	\checkmark		If a fault occurs which sets a fault log flag that has been checked for
3	\checkmark		22			38	\checkmark		54	\checkmark		this Act flag option then firstly the lamps
7	\checkmark		23	\checkmark		39	\checkmark		55			will be switched OFF and secondly
3	\checkmark		24	\checkmark		40	\checkmark		56	\checkmark		a flag will be set that can be read in
)	\checkmark		25	\checkmark		41	\checkmark		57	\checkmark		conditioning, to allow any further actions required to be performed by
0	\checkmark		26	\checkmark		42	\checkmark		58	\checkmark		conditioning.
1	\checkmark		27	\checkmark		43	\checkmark		59	\checkmark		
2			28	\checkmark		44	\checkmark		60	\checkmark		
3	\checkmark		29	\checkmark		45	\checkmark		61	\checkmark		
14	\checkmark		30	\checkmark		46	\checkmark		62	\checkmark		Clearance of Special Conditionir
15	\checkmark		31	\checkmark		47	\checkmark		63	abla		

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Instructions

NN0015						
Card Type	Rack Posn	Addr.	Port	Type	Line	Term Posn
Intelligent Backplane 16/0	Rack	01	0	I	000 - 007	2 LT1
Intelligent Backplane 16/0	Rack	01	1	I	008 - 015	2 LT1
Intelligent Backplane 16/0	Rack	02	2	I	016 - 023	2 LT2
Intelligent Backplane 16/0	Rack	02	3	I	024 - 031	2 LT2
Intelligent Backplane 16/0	Rack	03	4	I	032 - 039	2 LT3
Intelligent Backplane 16/0	Rack	03	5	I	040 - 047	2 LT3
Intelligent Backplane 16/0	Rack	04	6	I	048 - 055	2 LT4
Intelligent Backplane 16/0	Rack	04	7	I	056 - 063	2 LT4
Serial IO 24/16	1 I/01	05	8	I	064 - 071	1 I/01
Serial IO 24/16	1 I/01	05	9	I	072 - 079	1 I/01
Serial IO 24/16	1 I/01	05	10	I	080 - 087	1 I/01
Serial IO 24/16	1 I/01	05	11	0	088 - 095	1 I/01
Serial IO 24/16	1 I/01	05	12	0	096 - 103	1 I/01
Serial IO 24/4	1 I/O2	06	13	I	104 - 111	1 I/O2
Serial IO 24/4	1 I/O2	06	14	I	112 - 119	1 I/O2
Serial IO 24/4	1 I/O2	06	15	I	120 - 127	1 I/O2
Serial IO 24/4	1 I/O2	06	16	0	128 - 131	1 I/O2
CDII	7\					

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Instructions

ST950 ELV CONTROLLER ITEMS LIST SHEET 1 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS
l	l	<u></u>	l	l	l
1				l	
		ST950ELV CAB UK 20A 1LSLS GRY	1		
		ST950ELV CAB UK 40A 1LSLS GRY	!		
		ST950ELV CAB UK 20A 1LSLS BLK	!		
		ST950ELV CAB UK 40A 1LSLS BLK		!	
		ST950ELV CAB UK 20A 1LSLS LOW INRUSH GRY			l
/ 8		ST950ELV CAB UK 20A 1LSLS LOW INRUSH BLK			
	'	IRIX I ama and the (IOIO) hit	1		
		ELV Lamp switch (LSLS) kit ELV Lamp switch (LSLS) backplane kit	1		
		I/O card kit (4 outputs)	1 1		
		I/O card kit (4 outputs)	1 1		
		ST950 CPU I/O kit (4 outputs)	1 1		
		ST950 CPU I/O kit (4 outputs) ST950 CPU I/O kit (4 outputs) cableform	1	l I	
1 15	1 00 // 1/ 43 932 / 001	S1930 CFO 1/O KIC (4 Outputs) Cableloim	1	l I	
1 16	 	1	1	 	
1 17	 		1	l I	I I
	I I 667/1/32910/950	Intelligent detector backplane kit	1 4	l I	I I
		ELV detector 6U rack expansion kit	1 1		I
		ST900 ELV 24 V detector supply Kit (6A)	-	I	!
		19" Detector Rack	i	i	
22	l	1	i	İ	
	667/1/32980/040	ELV 20A to 40A upgrade kit	i	i	I
24			i	i	I
25		İ	i	İ	
26	667/1/33070/000	ELV Regulatory Sign expansion kit	İ	l	
27	667/1/32955/000	ELV Audible supply kit			I
28	667/1/27117/000	ST900 300mA RCD kit			I
29				l	I
30	667/1/32900/001	Expansion cabinet kit - Black			
		Expansion cabinet kit - Grey			I
		Cabinet mounted cut-out connection kit			I
	667/1/33007/000	LSLS Expansion cabinet kit			I
34					l
35			1	I	
		Manual Panel Full kit	1		
	1667/1/27110/000	Manual Panel RS232 kit	1		
38			1	l	
39			1		I
40			1	l	
ļ		1	I	I	
1					
1					

Note 1: Please refer to special instruction pages for additional information on items marked with an '*'.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Instructions

ST950 ELV CONTROLLER ITEMS LIST SHEET 2 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS
1			ļ	!!	
41		 ST950ELV CUCKOO KIT - T400L			
		ST950ELV CUCKOO KIT - ST800	1		
		ST950ELV CUCKOO KIT - MICROSENSE MTC	1		
		ST950ELV CUCKOO KIT - MICROSENSE SENTNL	1		
		ST950ELV CUCKOO KIT - PEEK TSC3	i	i i	
		ST950ELV CUCKOO KIT - PEEK TRX	i	i i	
i 48			i	i i	
1 49	İ		i	i i	
50					
51					
		ST900 Isolator locking kit			
	667/2/20234/000	Screw Lock Key			
54					
55					
		ST800 / ST900 DFM Lens Kit			
		NAL CONTROLLER CABINET BASE GREY			
		NAL CONTROLLER CABINET BASE BLACK			
	1667/2/27096/000	ST800 / ST900 Mounting Stool			
60 61					
		 Telephone Kit (Lightning protection)	1		
		Surge Arrester (Lightning protection)	1		
64			1		
		ST950 ELV Cabinet Export 20A 1 LSLS - Grey	i	i i	
		ST950 ELV Cabinet Export 40A 1 LSLS - Grey		i i	
		ST950 ELV RACK 19" 1LSLS	i	i i	
68	667/1/32945/000	ST900 ELV additional LSLS rack wiring kit	İ	İ	
69		1			
		ST900 ELV to ST950 ELV conversion kit			
		Manual Panel Signals off only			
		Temporary USB Wi-Fi Dongle			
		ST950 RTC backup battery			
		Mains kit (ST950ELV) - No maint sockets			
		2U 19" UTMC communications tray			
		Anti graffiti coating	1		
		Mains kit (ST950ELV)	1		
	667/1/330/5/000 667/1/27018/950	ELV 24V detector supply kit (2A)	1		
1 80	1 001/1/2/018/950	IGES CIOCK KIT	1		
1 00	 	 	1		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Special Instructions

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Special Instructions

*****PLEASE NOTE ******

ALL OF THE CAMERA INPUT'S HAVE BEEN INVERTED

THIS INCLUDES THE VECHICLE MVD'S, KERBSIDES AND ONCROSSINGS, YOU WILL NEED TO MAKE SURE THE INSTALLER IS AWARE OF THIS SO THE CORRECT OUTPUT WIRING FROM THE MVD'S IS CONNECTED.

THIS IS TO MAKE SURE THE INPUT GOES ACTIVE OR P.D. IF ANY OF THE MVD'S ARE DISCONNECTED.

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

Call Cancel

Call Cancel					
Unit No.	Input Name	Call Delay	Cancel Delay	Phase Demanded (Unlatched Demand)	
0	BQA	25	2		
1	BQB	25	2		
2	C2AQAIN	20	2		
3	C2AQBIN	20	2		
4	C2AQBIN	20	2		
5	*SCRT0	0	255		
6		0	0		
7		0	0		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Ċ	s and Ou				Port Num	ber & Type								Card T	Type & Address						
	Check				Port:	0		7		puts puts & O) Outpu	S	Intel Car	lligent Backplane 16/0 dAddress: 1						
	Manua	Albæfa	n							puis & O	uipuis										
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE	Used Pri HO	By C CC	IG	UD LRT	Term Block	Terminal No
\supset	0	0	I	AX1		\checkmark	\checkmark					Α	0	4.0						2LT1	A1
С	1	1	I	AX2		\checkmark	\checkmark					Α	0	4.0						2LT1	A2
С	2	2	I	AX3		\checkmark	\checkmark					A	0	3.0						2LT1	A3
С	3	3	I	AX4		\checkmark						Α	0	4.0						2LT1	A4
С	4	4	I	ASL5		\checkmark	\checkmark					Α	0	1.0						2LT1	B1
С	5	5	1	ASL6		\checkmark						Α	0	1.0						2LT1	B2
С	6	6	I	ASL7		\checkmark	\checkmark					Α	0	1.0						2LT1	В3
С	7	7	1	ASL8		\checkmark	\checkmark					A	0	1.0						2LT1	B4
	∆dd			Delete		<u>M</u> ove		Clear <u>U</u> s	edBy	1	Move to	o/from <u>b</u> a	kplane								
	Manual	Мар Ор	timisation																		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Input	s and Ou	tputs—		—————————————————————————————————————	ort Number & Type	,							—Card T	ype & Address
	Check	Signal R boxes Albcatio			ort: 1			O In	puts puts & O		Outputs		Inteli	igent Backplane 16/0 dAddress 1
	DET No	Bit No	Type I or O	Name	Req'd	BP (Count	Inv	U/D	Misc		DFM Group	Ext time	Used By Term Termina Phs UTC SDE Pri HC CC IG UD LRT Block No
$\circ $	8	0	I	BIN9	\checkmark	\checkmark					А	0	0.0	☑ □ □ □ □ □ □ 2lT1 C1
$\circ $	9	1	1	BIN10		\checkmark					А	0	0.0	☑ □ □ □ □ □ □ 2LT1 C2
$\circ $	10	2	1	BIN11		\checkmark					Α	0	0.0	☑ □ □ □ □ □ □ 2LT1 C3
$\circ $	11	3	1	SCOOT1	\checkmark						N		0.0	☑ □ □ □ □ □ □ 2LT1 C4
\circ	12	4	I	BX14	\checkmark	\checkmark					А	0	4.0	☑ □ □ □ □ □ □ 2LT1 D1
\circ	13	5	1	BX15		\checkmark					Α	0	4.0	☑ □ □ □ □ □ □ 2LT1 D2
$\circ $	14	6	1	BX16		\checkmark					Α	0	4.0	☑ □ □ □ □ □ □ 2LT1 D3
\circ	15	7	1	SCOOT2	abla	\checkmark					N		0.0	☑ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	<u>A</u> dd Manual	 Мар Ор	[timisation	Delete	Move		Clear <u>U</u> si	ed By		Move to	o/from <u>b</u> ack	plane		

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Input	and Out	puts-			—Dort Ni m	har 0 Timar								—Card T	Ema 9 Address						
	Check	Signal Ro boxes Alboation			Port Num Port:	2			() In	puts puts & O		Output	S	Inteli	Type & Address ligent Backplane 16/0 dAddress: 2						
	DET No	Bit No	Type For O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE	Use Pri	ed By HC CC	IG	UD LRT	Term Block	Terminal No
$\circ $	16	0	I	CX12		\checkmark	\checkmark					Α	0	4.0						2LT2	A1
$\circ $	17	1	I	CX13		\checkmark	\checkmark					A	0	4.0						2LT2	A2
$\circ $	18	2	I	CSL17		\checkmark	\checkmark					Α	0	1.0						2LT2	A3
$\circ $	19	3	I	CSL18		\checkmark	\checkmark					A	0	1.0						2LT2	A4
$\circ $	20	4	I	BSL19		\checkmark	\checkmark					Α	0	1.0						2LT2	B1
$\circ $	21	5	I	BSL20		\checkmark	\checkmark					A	0	1.0						2LT2	B2
$\circ $	22	6	I	BSL21		\checkmark	\checkmark					Α	0	1.0						2LT2	В3
$\circ $	23	7	I	SCOOT	3	\checkmark	\checkmark					N		0.0						2LT2	B4
	<u>A</u> dd Manual	Map Opt	imisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> ac	kplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Inpu	ts and Out	tputs-			Port Numl	har 8. Timar								—Card Ti	ype & Address					
	Check	Signal R boxes Albcatio			Port:	3			() In	puts puts & O) Outpu	ts	Intelli	igent Backplane 16/0 dAddress 2					
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC SDE P	Used By ri HC C	C IG	UD LRT	Term Block	Terminal No
0	24	0	I	BQA		\checkmark	abla					I	2	0.0			Z [2LT2	C1
0	25	1	I	BQB		\checkmark						I	2	0.0					2LT2	C2
0	26	2	1	SCOOT	4	\checkmark	\checkmark					N		0.0					2LT2	C3
0	27	3	I	SCOOT	5	\checkmark	\checkmark					N		0.0					2LT2	C4
0	28	4	1	FIN1		\checkmark						А	0	0.0					2LT2	D1
0	29	5	I	EIN2		\checkmark	\checkmark					А	0	0.0					2LT2	D2
0	30	6	1	EIN3		\checkmark	\checkmark					Α	0	0.0					2LT2	D3
0	31	7	I	EIN4		abla						Α	0	0.0					2 LT2	D4
	<u>A</u> dd Manua	I Мар Ор	timisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> a	ckplane							

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Input	s and Ou	tputs			D and Ni seel	0 T								CIT	O A -l-l						
	Check	Signal R boxes IAlbcatio			—Port Numl Port:	per & Type			() In	puts puts & O) Outputs		Intelli	iype & Address igent Backplane 16/ IAddress: 3)					
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc		DFM Group	Ext time	Phs UTC SE	L DE Pri	Ised By HC CO	C IG	UD LRT	Term Block	Terminal No
\circ	32	0	I	FX5		\checkmark	abla					А	0	4.0						2LT3	A1
\circ	33	1	1	FX6		\checkmark	\checkmark					Α	0	4.0						2LT3	A2
\circ	34	2	I	FSL10		\checkmark	\checkmark					Α	0	1.0						2LT3	A3
\circ	35	3	I	FSL11		\checkmark	\checkmark					А	0	1.0	\square					2LT3	A4
\circ	36	4	1	EX7		\checkmark						Α	0	4.0						2LT3	B1
\circ	37	5	1	EX8		\checkmark	\checkmark					Α	0	4.0						2LT3	B2
\circ	38	6	1	EX9		\checkmark	\checkmark					Α	0	4.0						2LT3	В3
\circ	39	7	1	SCOOT	6	\checkmark	\checkmark					N		0.0						2LT3	B4
	<u>A</u> dd Manua	І Мар Ор	[timisation	Dejete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> ack	plane]							

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Inpu	ts and Out	tputs-			Port Num	hor 0 Timor								—Cord Ti	/pe & Address						
	Check	Signal R boxes IAlbcatio			Port:	5			() In	puts puts & Ou) Outputs		Intelli	gent Backplane 1 IAddress: 3	6/0					
	DET No	Bit No	Type I or O	Name		Redd	BP (Count	Inv	U/D	Misc		DFM Group	Ext time	Phs UTC S		Jsed By HC CC) IG	UD LRT	Term Block	Terminal No
0	40	0	I	ESL12		\checkmark	\checkmark					Α	0	1.0						2LT3	C1
0	41	1	I	ESL13		\checkmark	\checkmark					Α	0	1.0						2LT3	C2
0	42	2	1	ESL14		\checkmark	\checkmark					Α	0	1.0						2LT3	C3
0	43	3	1	SCOOT	7	\checkmark	\checkmark					N		0.0						2LT3	C4
0	44	4	I	HSLA		\checkmark	\checkmark					Α	0	1.0						2LT3	D1
0	45	5	1	HSLB		\checkmark	\checkmark					А	0	1.0						2LT3	D2
0	46	6	I	HSLC		\checkmark	\checkmark					Α	0	1.0						2LT3	D3
0	47	7	1	SCOOT	8	\checkmark	\checkmark					N		0.0						2LT3	D4
	<u>A</u> dd Manual	Мар Ор	timisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> ackp	olane]							

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Inpu	ts and Ou	tputs			Port Num	har & Timar								Card T	pe & Address							
	Check	Signal R boxes IAlbcatio			Port:	6			O In	outs outs & O		Output	S	Intelli	pent Backplane Address: 4							
	DET No	Bit No	Type For O	Name		Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC	SDE P	Used By ri HC	CC	IG L	JD LRT	Term Block	Terminal No
С	48	0	I	C1AQA		\checkmark	\checkmark					N		0.0							2LT4	A1
С	49	1	I	C1AQB		\checkmark	\checkmark					N		0.0							2LT4	A2
С	50	2	I	C1AQC		\checkmark	\checkmark					N		0.0							2LT4	A3
C	51	3	I																		2LT4	A4
С	52	4	I																		2 LT4	B1
С	53	5	1																		2LT4	B2
C	54	6	1																		2LT4	В3
С	55	7	I																		2LT4	B4
	<u>A</u> dd Manua		[timisation	Dejete		Move		Clear <u>U</u> s	edBy		Movet	o/from <u>b</u> ac	kplane									

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Input	s and Out	tputs-			Port Num	ber & Type								—Card T	iype & Address						
	Check	Signal R boxes Albcatio			Port:	8			O In	puts puts & O		Output	5	Seri	al IO 24/16 dAddress 5						
	DET No	Bit No	Type I or O	Name		Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC S	l SDE Pri	Jsed By HC CC	; IG	UD LRT	Term Block	Line No
	64	0	1	AIN22		\checkmark			\checkmark			Α	0	0.0						11/01	I-0
	65	1	1	AIN23		\checkmark			\checkmark			Α	0	0.0						11/01	I-1
\supset	66	2	I	JPBU21	16	\checkmark						Α	1	0.0						11/01	I-2
	67	3	I	JPBU21	18	\checkmark						А	1	0.0						11/01	I-3
	68	4	I	JPBU21	7	\checkmark						A	1	0.0						11/01	I-4
	69	5	1	JPBU21	9	\checkmark						А	1	0.0						11/01	I-5
>	70	6	I	JKSD21	8	\checkmark			\checkmark			Α	1	1.0						11/01	I-6
	71	7	1	JKSD21	19	\checkmark						Α	1	1.0						11/01	I-7
	<u>A</u> dd Manual		timisation	Delete		<u>M</u> ove		Clear <u>U</u> s	sed By		Move to	o/from <u>b</u> ac	kplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Input	s and Out	puts-			Port Num	nhar & Tiyna								C	and Tu	pe & Address							
	Check	Signal R boxes Albcatio			Port:	9			O In	puts puts & O		Outpu	ts		Seria	IIO 24/16 Address 5							
	DET No	Bit No	Type For O	Name		Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time		Phs UTC	SDE F	Used ri H	By C CC	IG	UD LRT	Term Block	Line No
	72	0	1	JOCD2	18	\checkmark			\checkmark			А	0	0.6								11/01	I-8
	73	1	1	JOCD2	17	\checkmark			\checkmark			Α	0	0.6								11/01	I-9
\supset	74	2	I																			11/01	I-10
\supset	75	3	I																			11/01	I-11
	76	4	I																			11/01	I-12
	77	5	I																			11/01	I-13
\supset	78	6	I																			11/01	I-14
	79	7	I																			11/01	I-15
	<u>A</u> dd Manual	Мар Ор	timisation	Delete		<u>M</u> ove		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> a	ckplane										

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

	nable (Signal Re		Port Nun	iou a type								r —CardT	Type & Address						
		ooxes Alboation		Port:	11]	O In	puts puts & Ou		Outpu	ts	Seri	ial IO 24/16 dAddress: 5						
DI No		Bit No	Type I or O	Name	Redd	BP C	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC S	U DE Pri	Jsed By HC CC	IG	UD LRT	Term Block	Line No
\bigcirc	3	0	0	C2S2	\checkmark						N		0.0						11/01	0-0
\bigcirc	9	1	0	C2S5	\checkmark						N		0.0						11/01	0-1
0 90)	2	0																11/01	0-2
O 91	ı	3	0																11/01	0-3
O 92	2	4	0	C1AQAOUT							N		0.0						11/01	0-4
	3	5	0	C1AQBOUT	\checkmark						N		0.0						11/01	O-5
\bigcirc 94	1	6	0	C1AQCOUT							N		0.0						11/01	0-6
O 95	5	7	0																11/01	0-7
N	<u>A</u> dd //anual	Map Opt	imisation	Delete	<u>M</u> ove		Clear <u>U</u> se	ed By		Move to	o/from <u>b</u> a	ckplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

-Input:	and Out	tputs		—Dat	Number & Type								—Card∃	Type & Address						
	Check	Signal R boxes Albcatio		Por				O Ir	nputs nputs & O		Outpul	S	Ser	ial IO 24/4 dAddress 6						
	DET No	Bit No	Type I or O	Name	Req'd	BP (Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC	SDE Pri	Used By HC CO	C IG	UD LRT	Term Block	Line No
$\circ $	104	0	1	MC1	abla						N		0.0						11/02	I-0
$\circ $	105	1	I	MC2	\checkmark						N		0.0						11/02	I-1
$\supset \mid$	106	2	I	C2AQCIN	abla						I	2	0.0						11/02	I - 2
$\supset \mid$	107	3	1	C2AQAIN	\checkmark						I	2	0.0						11/02	I-3
\supset	108	4	1	C2AQBIN							I	2	0.0						11/02	I-4
\supset	109	5	I	C1S2	abla						N		0.0						11/02	I-5
\supset	110	6	1	C1S5	abla						N		0.0						11/02	I-6
\supset	111	7	1	C1S8							N		0.0						11/02	I-7
	<u>A</u> dd Manual	I Мар Ор	timisation	Delete	Move		Clear <u>U</u> s	edBy		Movet	o/from <u>b</u> ao	kplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

nputs	and Out	puts			—Port Num	her & Tyner								n I≕Car	d Type & Address						
	Check	Signal Ro boxes Alboation			Port:	14			O In	puts puts & O		Outpu	ts	8	erial IO 24/4 ard Address: 6						
	DET No	Bit No	Type For O	Name		Redd	BP	Count	Inv	U/D	Misc	DFM	DFM Group	Ext time	Phs UTC S	U BDE Pri	Jsed By HC CC	IG	UD LRT	Term Block	Line No
	112	0	I																	11/02	I-8
	113	1	I																	11/02	I - 9
	114	2	I																	11/02	I-10
	115	3	1																	11/02	I-11
	116	4	1	ONBAT		\checkmark						N		0.0						11/02	I-12
,	117	5	I	LOWBA	T	\checkmark						N		0.0						11/02	I-13
	118	6	I	UPSWF	RN	\checkmark						N		0.0						11/02	I-14
	119	7	I	UPSFLT	Г							N		0.0						11/02	I-15
	<u>A</u> dd Manual	Map Opt	timisation	Delete		Move		Clear <u>U</u> s	edBy		Move to	o/from <u>b</u> a	ckplane								

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Aspect Drives (ELV Controllers)

_	Reversed	uration for LSI	.S 1 of 2 cards (Ca	ahinat 1)————	HF	PU Connection	1
Output 32	Phase A	Aspect Red	Use Phase	Output 16	Phase E	Aspect Red	Use Phase
31	Α	Red	Phase	15	E	Amber	Phase
30	Α	Amber	Phase	14	Е	Amber	Phase
29	Α	Amber	Phase	13	Е	Green	Phase
28	Α	Green	Phase	12	Е	Green	Phase
27	Α	Green	Phase	11	F	Red	Phase
26	В	Red	Phase	10	F	Red	Phase
25	В	Amber	Phase	9	F	Amber	Phase
24	В	Green	Phase	8	F	Amber	Phase
23	С	Red	Phase	7	F	Green	Phase
22	С	Amber	Phase	6	F	Green	Phase
21	С	Green	Phase	5	G	Red	Phase
20	D	Red	Phase	4	G	Amber	Phase
19	D	Amber	Phase	3	G	Green	Phase
18	D	Green	Phase	2	Н	Red	Phase
17	Ε	Red	Phase	1	Н	Amber	Phase

Engineer

(Yunex Traffic) : M1 Junction 15, Controller 2 (South) Site Ref: 7101 Intersection

Aspect Drives (ELV Controllers)

_	Reversed				HF	U Connection	1
•	•		S 2 of 2 cards (Ca	•			
Output 32	Phase H	Aspect Green	Use Phase	Output 16	Phase N/A	Aspect N/A	Use N/A
31	1	Red	Phase	15	N/A	N/A	N/A
30	I	Amber	Phase	14	N/A	N/A	N/A
29	1	Green	Phase	13	N/A	N/A	N/A
28	J	Red	Phase	12	N/A	N/A	N/A
27	J	Amber	Phase	11	N/A	N/A	N/A
26	J	Green	Phase	10	N/A	N/A	N/A
25	J	Green	Phase	9	N/A	N/A	N/A
24	N/A	N/A	N/A	8	N/A	N/A	N/A
23	N/A	N/A	N/A	7	N/A	N/A	N/A
22	N/A	N/A	N/A	6	N/A	N/A	N/A
21	N/A	N/A	N/A	5	N/A	N/A	N/A
20	N/A	N/A	N/A	4	N/A	N/A	N/A
19	N/A	N/A	N/A	3	N/A	N/A	N/A
18	N/A	N/A	N/A	2	N/A	N/A	N/A
17	N/A	N/A	N/A	1	N/A	N/A	N/A

Engineer : (Yunex Traffic)

Intersection : M1 Junction 15, Controller 2 (South) Site Ref: 7101

I/O - DFM Group Timings

nput Group	State	SETA	SETB	SETC	SETD		
Group 0	Active (Mins)	30	30	30	30	State	Min Max
	InActive (Hrs)	18	18	18	18	Active (Mins)	0 254
Group 1	Active (Mins)	10	10	10	10	InActive (Hrs)	0 254
	InActive (Hrs)						
Group 2	Active (Mins)	10	10	10	10		
	InActive (Hrs)						
Group 3	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 4	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 5	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 6	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 7	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		

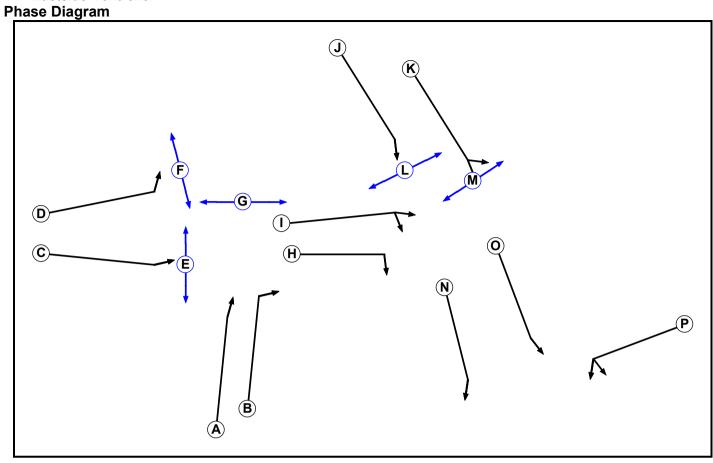
Index

		IIIdex
1		l Junction Data
		Administration
		Phases, Stages and Streams
		Facilities/Modes Enabled and Mode Priority Levels
	1.4 1.5	Phases in Stages Stages in Streams
2	Phases	g and a second s
_		Phase Type and Conditions
	2.2	• •
	2.3	Timings
		2.3.1 Phase Minimums, Maximums, Extensions, Ped Leaving Periods
		2.3.2 Phase Intergreen Times
		2.3.3 Intergreen Handset Limits
	24	2.3.4 Phase Timing Handset Ranges VA Demand and Extend Definitions
		Phase Internal/Revertive Demands
		Pelicans, Puffins and Toucans
		2.6.1 Phase - On Crossing and Kerbside Detector Definitions
		2.6.2 Stream - Pelican/Puffin/Toucan Times
		2.6.3 Phase - Pelican, Puffin and Toucan Times
		2.6.4 IO and Link - Pelican/Puffin/Toucan Times2.6.5 Pelican, Puffin, Toucan Pushbutton/Kerbside Associations
3	Stane M	2.6.5 Pelican, Puffin, Toucan Pushbutton/Kerbside Associations Movements
J	3.1	
		Stage Internal Demands/Pedestrian Window Times
	3.3	Phase Delays
	3.4	Intergreen Delays (No configuration data to print)
4		and Facilities - Detailed
	4.1 4.2	Fixed Time Cableless Linking
	7.2	4.2.1 CLF - Plan(s)
		4.2.2 CLF - Base Time
		4.2.3 CLF - Demand Dependent Moves
	4.3	UTC and MOVA
		4.3.1 UTC General Data
		4.3.2 UTC Control and Reply Data Format
		4.3.3 UTC Data Definitions 4.3.3.1 UTC Phase Demand and Extend Definitions
		4.3.3.2 UTC Stage and Mode Data Definitions
		4.3.3.3 UTC Demand Dependent Forces
		4.3.4 MOVA Stages
		4.3.5 UTC and MOVA Detectors
	4.4	Master Time Clock 4.4.1 MTC - Time Switch Parameters
		4.4.2 MTC - Time Switch Parameters Array
		4.4.3 MTC - Day Type
		4.4.4 MTC - Timetable
	4.5	Integral Lamp Monitoring
		4.5.1 LMU - General
		4.5.2 LMU Sensors (Built-in)
		4.5.3 LMU Sensors (External) for Regulatory Signs4.5.4 LMU Sensor Load Types
		4.5.5 RLM Additional Intergreens
		4.5.6 RLM Phase Inhibits
		Hurry Call
	4.7	Manual
		4.7.1 Manual Panel
	4 8	4.7.2 Manual Mode - Optional Phases Appearance Reserve State
5		oning Data
-		Special Conditioning
	5.2	Special Conditioning Timers
_		Fault Log Flags
6	•	Instructions
7	I/O 7.1	Call Cancel
	7.1	Can Canoci

- 7.3 Aspect Drives (ELV Controllers)
 7.4 I/O DFM Group Timings
 7.5 Switched Signs (No configuration data to print)


APPENDIX E M1 Junction 15 LINSIG outputs

Full Input Data And Results

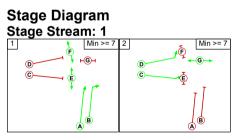

User and Project Details

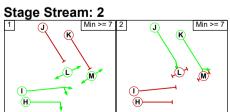
Project:	Northampton Gateway
Title:	M1 Junction 15 impact with additional mezzanine
Location:	northampton
Client:	Segro
Additional detail:	Flow sets have been updated using the latest version of NSTM for the 2031 assessment year (June 2025).
File name:	250604 M1 Junction 15 - additional mez test with new NSTM flows.lsg3x
Author:	
Company:	ADC Infrastructure
Address:	Nottingham

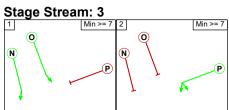
Network Layout Diagram

C1 - Eastside Controller

Phase Input Data


Phase Name	Phase Type	Stage Stream	Assoc. Phase	Street Min	Cont Min
А	Traffic	1		7	7
В	Traffic	1		7	7
С	Traffic	1		7	7
D	Traffic	1		7	7
Е	Pedestrian	1		5	5
F	Pedestrian	1		5	5
G	Pedestrian	1		7	7
Н	Traffic	2		7	7
I	Traffic	2		7	7
J	Traffic	2		7	7
K	Traffic	2		7	7
L	Pedestrian	2		5	5
М	Pedestrian	2		5	5
N	Traffic	3		7	7
0	Traffic	3		7	7
Р	Traffic	3		7	7


Phase Intergreens Matrix

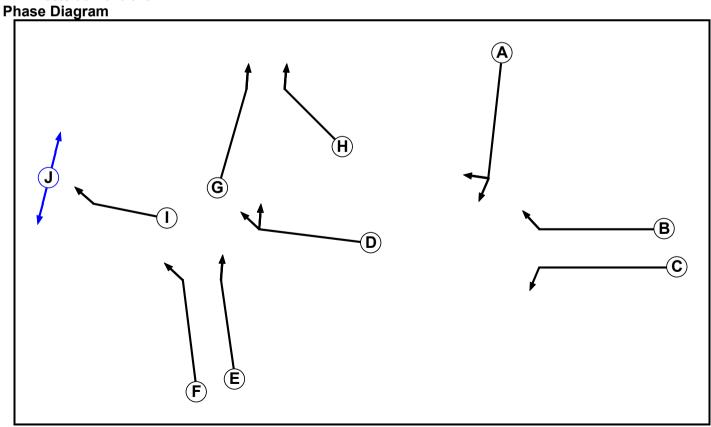

rnase mie	ıyı	greens matrix															
							St	arti	ng F	Pha	se						
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р
	Α		_	5	7	-	-	8	-	•	•	-	-	-	-	-	-
	В	-		5	_	-	-	-	-	-	-	-	-	-	-	-	-
	С	9	9		-	7	-	-	-	-	-	-	-	-	-	-	-
	D	9	-	-		-	7	-	-	•	•	-	-	-	-	-	-
	Е	-	-	5	-		-	-	-	•	•	-	-	-	-	-	-
	F	_	_	-	5	-		-	-	-	-	-	-	-	-	-	-
	G	5	-	-	_	-	-		-	•	-	-	-	-	-	-	-
Terminating Phase	Н	_	_	-	_	-	-	-		•	5	-	-	-	-	-	-
	Ι	_	_	-	-	-	-	-	-		5	6	-	-	-	-	-
	J	-	-	-	-	-	-	-	9	8		-	7	-	-	-	-
	K	-	-	-	-	-	-	-	-	7	-		-	7	-	-	-
	L	-	-	-	-	-	-	-	-	-	5	-		-	-	-	-
	М	-	-	-	-	-	-	-	-	-	-	5	-		-	-	-
	N	-	-	-	-	-	-	-	-	-	-	-	-	-		-	5
	0	-	-	-	-	_	-	_	-	-	1	-	-	-	-		6
	Р	-	-	-	-	-	-	-	-	-	-	-	-	-	10	7	

Phases in Stage

Stream	Stage No.	Phases in Stage
1	1	ABEF
1	2	CDG
2	1	HILM
2	2	JΚ
3	1	NO
3	2	Р

Prohibited Stage Change Stage Stream: 1

	To Stage					
		1	2			
From Stage	1		8			
J	2	9				


Stage Stream: 2

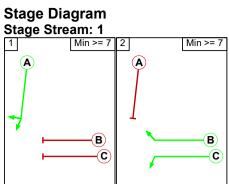
	To Stage							
		1	2					
From Stage	1		6					
)	2	9						

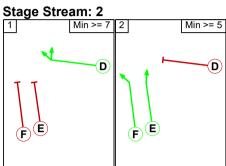
Stage Stream: 3

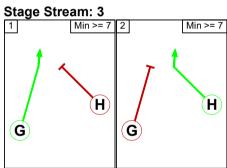
	To Stage							
		1	2					
From Stage	1		6					
3	2	10						

C2 - Westside Controller

Phase Input Data


Phase Name	Phase Type	Stage Stream	Assoc. Phase	Street Min	Cont Min
А	Traffic	1		7	7
В	Traffic	1		7	7
С	Traffic	1		7	7
D	Traffic	2		7	7
Е	Traffic	2		7	7
F	Traffic	2		7	0
G	Traffic	3		7	7
Н	Traffic	3		7	7
I	Traffic	4		7	7
J	Pedestrian	4		5	5


Phase Intergreens Matrix


i nace intergreene matrix											
		Starting Phase									
		Α	В	С	D	Е	F	G	Н	I	J
	Α		8	10	-	-	-	-	-	-	
	В	8		-	-	_	-	-	-	-	-
	С	7	-		-	_	_	-	-	•	-
	D	-	-	-		5	7	-	-	-	-
Terminating Phase	Е	-	-	-	8		_	-	-	-	-
	F	-	-	-	7	_		-	-	•	-
	G	-	-	-	-	_	-		6	-	
	Н	-	-	-	-	-	-	6		-	
	I	-	-	-	-	-	-	-	-		7
	J	-	-	-	-	-	-	-	-	5	

Phases in Stage

Stream	Stage No.	Phases in Stage
1	1	Α
1	2	ВС
2	1	D
2	2	EF
3	1	G
3	2	Н
4	1	1
4	2	J

Phase Delays Stage Stream: 2

Term. Stage	Start Stage	Phase	Туре	Value	Cont value
2	1	F	Losing	8	8

Prohibited Stage Change Stage Stream: 1

- cugo			··· ·		
	To Stage				
		1	2		
From Stage	1		10		
J	2	8			

Stage Stream: 2

	То	Sta	ge
		1	2
From Stage	1		7
	2	15	

Stage Stream: 3

	То	Sta	ige
l.		1	2
From Stage	1		6
J	2	6	

Stage Stream: 4

otage officarii. T					
	To Stage				
		1	2		
From Stage	1		7		
	2	5			

Lane Input Data

Junction: M1 Jun	Junction: M1 Junction 15											
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (M1 Southbound Offslip)	U	D	2	3	18.0	Geom	-	3.65	0.00	Y	Arm 2 Left	Inf
1/2 (M1 Southbound Offslip)	U	D	2	3	60.0	Geom	-	3.65	0.00	N	Arm 2 Left	Inf
1/3 (M1 Southbound Offslip)	U	D	2	3	60.0	Geom	-	3.65	0.00	N	Arm 2 Left	Inf
1/4 (M1 Southbound Offslip)	U	С	2	3	18.0	User	4000	-	-	-	-	-
2/1 (A45 Northbound)	U		2	3	4.3	Inf	-	-	-	-	-	-
2/2 (A45 Northbound)	U		2	3	4.3	Inf	-	-	-	-	-	-
2/3 (A45 Northbound)	U		2	3	4.3	Inf	-	-	-	-	-	-
3/1	U	I	2	3	11.3	User	1900	-	-	-	-	-
3/2	U	I	2	3	11.3	User	1900	-	-	-	-	-
3/3	U	Н	2	3	11.3	User	1900	-	-	-	-	-
3/4	U	Н	2	3	11.3	User	1900	-	-	-	-	-
4/1 (A45	U	К	2	3	33.0	Geom		3.65	0.00	Y	Arm 5 Left	Inf
Southbound)	U	K	2	3	33.0	Geom	-	3.03	0.00	1	Arm 18 Ahead	Inf
4/2 (A45 Southbound)	U	К	2	3	67.8	Geom	-	3.65	0.00	N	Arm 18 Ahead	Inf
4/3 (A45 Southbound)	U	J	2	3	67.8	Geom	-	3.65	0.00	N	Arm 19 Ahead	Inf
4/4 (A45 Southbound)	U	J	2	3	67.8	Geom	-	3.65	0.00	N	Arm 19 Ahead	Inf
4/5 (A45 Southbound)	U	J	2	3	33.0	Geom	-	3.65	0.00	N	Arm 19 Ahead	Inf
5/1 (Saxon Avenue Exit)	U		2	3	4.3	Inf	-	-	-	-	-	-
6/1 (M1 Northbound Circulatory)	U	А	2	3	33.9	User	2120	-	-	-	-	-
6/2 (M1 Northbound Circulatory)	U	А	2	3	33.9	User	2120	-	-	-	-	-

6/3 (M1 Northbound Circulatory)	U	А	2	3	60.0	User	2120	-	-	-	-	-
6/4 (M1 Northbound Circulatory)	U	A	2	3	33.9	User	2120	-	-	-	-	-
7/1 (M1 Southbound Onslip)	U		2	3	4.3	Inf	-	-	-	-	-	-
7/2 (M1 Southbound Onslip)	U		2	3	4.3	Inf	-	-	-	-	-	-
8/1	U	Р	2	3	60.0	Geom	-	3.50	0.00	Y	Arm 6 Left	Inf
(Saxon Avenue)	_									·	Arm 7 Left	30.00
8/2 (Saxon Avenue)	U	Р	2	3	60.0	Geom	-	3.50	0.00	N	Arm 6 Left	Inf
9/1 (M1 Northbound Offslip)	U	С	2	3	15.7	Geom	-	3.65	0.00	Y	Arm 10 Left	Inf
9/2 (M1 Northbound Offslip)	U	В	2	3	60.0	Geom	-	3.65	0.00	N	Arm 16 Ahead	Inf
9/3 (M1 Northbound Offslip)	U	В	2	3	60.0	Geom	-	3.65	0.00	N	Arm 16 Ahead	Inf
9/4 (M1 Northbound Offslip)	U	В	2	3	31.3	Geom	-	3.65	0.00	N	Arm 16 Ahead	Inf
10/1	U		2	3	4.3	Inf	-	-	-	-	-	-
10/2	U		2	3	4.3	Inf	-	-	-	-	-	-
11/1	U	D	2	3	20.0	User	1900	-	-	-	-	-
11/2	U	D	2	3	20.0	User	1900	-	-	-	-	-
12/1 (Toucan Crossing)	U	I	2	3	7.0	Geom	-	3.80	0.00	Y	Arm 14 Ahead	Inf
12/2 (Toucan Crossing)	U	I	2	3	7.0	Geom	-	3.80	0.00	Y	Arm 14 Ahead	Inf
13/1 (A508 Northampton Rd)	U	F	2	3	10.0	Geom	-	3.65	0.00	Y	Arm 12 Ahead	Inf
13/2 (A508 Northampton Rd)	U	F	2	3	60.0	Geom	-	3.65	0.00	Y	Arm 12 Ahead	Inf
13/3 (A508 Northampton Rd)	U	E	2	3	60.0	Geom	-	3.65	0.00	N	Arm 17 Ahead	Inf
13/4 (A508 Northampton Rd)	U	E	2	3	60.0	Geom	-	3.65	0.00	N	Arm 17 Ahead	Inf
13/5 (A508 Northampton Rd)	U	E	2	3	20.0	Geom	-	3.65	0.00	N	Arm 17 Ahead	Inf
14/1	U		2	3	60.0	Inf	-	-	-	-	-	-
14/2	U		2	3	60.0	Inf	_	_	-	_	_	_

15/1	U	Α	2	3	34.8	User	2000	-	-	-	-	-
15/2	U	Α	2	3	34.8	User	2000	-	-	-	-	-
15/3	U	Α	2	3	34.8	User	2000	-	-	-	-	-
15/4	U	В	2	3	10.4	User	2000	-	-	-	-	-
16/1	U	Н	2	3	10.4	User	2000	-	-	-	-	-
16/2	U	Н	2	3	10.4	User	2000	-	-	-	-	-
16/3	U	Н	2	3	10.4	User	2000	-	-	-	-	-
17/1	U	G	2	3	14.8	User	2000	-	-	-	-	-
17/2	U	G	2	3	14.8	User	2000	-	-	-	-	-
17/3	U	G	2	3	14.8	User	2000	-	-	-	-	-
18/1	U	0	2	3	11.3	User	2000	-	-	-	-	-
18/2	U	0	2	3	11.3	User	2000	-	-	-	-	-
19/1	U	N	2	3	13.0	User	2000	-	-	-	-	-
19/2	U	N	2	3	13.0	User	2120	-	-	-	-	-
19/3	U	N	2	3	13.0	User	2120	-	-	-	-	-

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: '2031 Updated NSTM background - AM'	08:00	09:00	01:00	
2: '2031 Updated NSTM background - PM'	17:00	18:00	01:00	
3: '2031 Updated NSTM +mez@50% - AM'	08:00	09:00	01:00	
4: '2031 Updated NSTM +mez@50% - PM'	17:00	18:00	01:00	
5: '2031 Updated NSTM sensitivity test - AM'	08:00	09:00	01:00	
6: '2031 Updated NSTM sensitivity test - PM'	17:00	18:00	01:00	
7: '2031 Updated NSTM +mez ITP - AM'	08:00	09:00	01:00	
8: '2031 Updated NSTM +mez ITP - PM'	17:00	18:00	01:00	

Scenario 1: '2031 Updated NSTM Background - AM' (FG1: '2031 Updated NSTM background - AM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination						
		Α	В	С	D	Е	Tot.
	Α	44	28	644	1735	1274	3725
	В	26	0	39	24	104	193
Origin	С	1093	37	0	40	0	1170
	D	758	24	64	17	295	1158
	Е	1874	173	0	379	0	2426
	Tot.	3795	262	747	2195	1673	8672

Traffic La	ne Flows
Lane	Scenario 1: 2031 Updated NSTM Background - AM
Junction: N	//1 Junction 15
1/1 (short)	598
1/2 (with short)	1237(In) 639(Out)
1/3 (with short)	1189(In) 637(Out)
1/4 (short)	552
2/1	1236
2/2	1353
2/3	1206
3/1	269
3/2	29
3/3	123
4/1 (short)	273 335
4/2 (with short)	672(In) 337(Out)
4/3	1004
4/4 (with short)	2049(In) 1000(Out)
4/5 (short)	1049
5/1	262
6/1	1151
6/2	1004
6/3	291
6/4	1157
7/1	381
7/2 8/1	366 85
8/2	108
9/1 (short)	40
9/2 (with short)	406(In) 366(Out)
9/3 (with short)	764(In) 389(Out)
9/4 (short)	375
10/1	1191
10/2	1004
11/1	598
11/2	850

12/1	745					
12/2	928					
13/1 (short)	147					
13/2 (with short)	295(In) 148(Out)					
13/3	221					
13/4 (with short)	642(In) 321(Out)					
13/5 (short)	321					
14/1	745					
14/2	928					
15/1	638					
15/2	714					
15/3 (with short)	711(In) 569(Out)					
15/4 (short)	142					
16/1	366					
16/2	389					
16/3	375					
17/1	272					
17/2	325					
17/3	336					
18/1	342					
18/2	366					
19/1	1127					
19/2	1273					
19/3	1049					

Lane Saturation Flows Junction: M1 Junction 15								
	Lane		Nearside	Allowed	Turning	Turning	Sat Flow	Flared Sat Flow
Lane	Width (m)	Gradient	Lane	Turns	Radius (m)	Prop.	(PCU/Hr)	(PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ration Flo	V	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ration Flo	v	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ration Flo	V	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	8.4 % 91.6 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ration Flo	V	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ration Flo	V	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane	uses a dire	ctly entered Satu	ration Flov	V	2120	2120
6/4 (M1 Northbound Circulatory Lane 4)		This lane uses a directly entered Saturation Flow						2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)		Infinite Saturation Flow						Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	54.1 % 45.9 %	1921	1921
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2			Infinite	Saturation Flow			Inf	Inf
15/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/2		This lane	uses a dir	ectly entered Satur	ation Flo	DW W	2000	2000
16/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120
19/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120

Scenario 2: '2031 Updated NSTM +mez@50% - AM' (FG3: '2031 Updated NSTM +mez@50% - AM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination										
		Α	В	С	D	Е	Tot.				
	Α	44	28	644	1773	1274	3763				
	В	26	0	39	24	104	193				
Origin	С	1093	37	0	67	0	1197				
	D	773	24	74	17	304	1192				
	E	1874	173	0	402	0	2449				
	Tot.	3810	262	757	2283	1682	8794				

Traffic Lane Flows							
Lane	Scenario 2: 2031 Updated NSTM +mez@50% - AM						
Junction: N	/11 Junction 15						
1/1 (short)	597						
1/2 (with short)	1236(In) 639(Out)						
1/3 (with short)	1213(In) 638(Out)						
1/4 (short)	575						
2/1	1219						
2/2	1369						
2/3	1222						
3/1	273						
3/2	35						
3/3	122						
3/4	297						
4/1 (short)	335						
4/2 (with short)	672(In) 337(Out)						
4/3	1027						
4/4 (with short)	2064(In) 992(Out)						
4/5 (short)	1072						
5/1	262						
6/1	1165						
6/2	1051						
6/3	267						
6/4	1181						
7/1	385						
7/2	372						
8/1	84						
8/2	109						
9/1 (short)	67						
9/2 (with short)	413(In) 346(Out)						
9/3 (with short)	784(In) 392(Out)						
9/4 (short)	392						
10/1	1232						
10/2	1051						
11/1	655						
11/2	793						

12/1	807
12/2	875
13/1 (short)	152
13/2 (with short)	304(In) 152(Out)
13/3	230
13/4 (with short)	658(In) 328(Out)
13/5 (short)	330
14/1	807
14/2	875
15/1	622
15/2	730
15/3 (with short)	736(In) 584(Out)
15/4 (short)	152
16/1	346
16/2	392
16/3	392
17/1	276
17/2	338
17/3	344
18/1	346
18/2	372
19/1	1149
19/2	1289
19/3	1072

Junction: M1 Junction 15								
Lane	Lane Width	Gradient	Nearside Lane	Allowed Turns	Turning Radius	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (M1 Southbound Offslip)	(m) 3.65	0.00	Y	Arm 2 Left	(m) Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ration Flo	N	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ration Flo	W	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ration Flo	W	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ration Flo	N	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	8.4 % 91.6 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/4 (M1 Northbound Circulatory Lane 4)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)			Infinite S	Saturation Flow		ı	Inf	Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	53.6 % 46.4 %	1920	1920
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105
	i	1	1	İ	1	Î.	i	İ

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2			Infinite	Saturation Flow			Inf	Inf
15/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/2		This lane	uses a dir	ectly entered Satur	ation Flo	DW W	2000	2000
16/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120
19/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120

Scenario 3: '2031 Updated NSTM +mez ITP - AM' (FG7: '2031 Updated NSTM +mez ITP - AM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination											
		Α	В	С	D	Е	Tot.					
	Α	44	28	644	1784	1274	3774					
	В	26	0	39	24	104	193					
Origin	С	1093	37	0	75	0	1205					
	D	778	24	77	17	307	1203					
	Е	1874	173	0	408	0	2455					
	Tot.	3815	262	760	2308	1685	8830					

Traffic Lane Flows							
Lane	Scenario 3: 2031 Updated NSTM +mez ITP - AM						
Junction: N	//1 Junction 15						
1/1 (short)	597						
1/2 (with short)	1236(In) 639(Out)						
1/3 (with short)	1219(In) 638(Out)						
1/4 (short)	581						
2/1	1234						
2/2	1364						
2/3	1217						
3/1	274						
3/2	37						
3/3	127						
3/4	298						
4/1 (short)	335						
4/2 (with short)	672(In) 337(Out)						
4/3	1036						
4/4 (with short)	2066(In) 1064(Out)						
4/5 (short)	1002						
5/1	262						
6/1	1163						
6/2	1070						
6/3	412						
6/4	1036						
7/1	386						
7/2	374						
8/1	159						
8/2	34						
9/1 (short)	75						
9/2 (with short)	434(In) 359(Out)						
9/3 (with short)	771(In) 385(Out)						
9/4 (short)	386						
10/1	1238						
10/2	1070						
11/1	695						
11/2	753						

12/1	848
12/2	837
13/1 (short)	153
13/2 (with short)	307(In) 154(Out)
13/3	233
13/4 (with short)	663(In) 331(Out)
13/5 (short)	332
14/1	848
14/2	837
15/1	637
15/2	725
15/3 (with short)	734(In) 579(Out)
15/4 (short)	155
16/1	359
16/2	385
16/3	386
17/1	278
17/2	340
17/3	348
18/1	347
18/2	374
19/1	1163
19/2	1362
19/3	1002

Junction: M1 Junction 15								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ration Flov	N	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ration Flo	N	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	8.4 % 91.6 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane	uses a dire	ctly entered Satu	ıration Flov	V	2120	2120
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow						2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)				Inf	Inf			
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	75.5 % 24.5 %	1941	1941
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2			Infinite	Saturation Flow			Inf	Inf
15/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/2		This lane	uses a dir	ectly entered Satur	ation Flo	DW W	2000	2000
16/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
17/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120
19/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2120	2120

Scenario 4: '2031 Updated NSTM sensitivity test - AM' (FG5: '2031 Updated NSTM sensitivity test - AM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination							
		Α	В	С	D	Е	Tot.	
	Α	44	28	644	1811	1274	3801	
	В	26	0	39	24	104	193	
Origin	С	1093	37	0	95	0	1225	
	D	788	24	84	17	314	1227	
	Е	1874	173	0	425	0	2472	
	Tot.	3825	262	767	2372	1692	8918	

Traffic La	ne Flows
Lane	Scenario 4: 2031 Updated NSTM sensitivity test - AM
Junction: N	M1 Junction 15
1/1 (short)	597
1/2 (with short)	1235(In) 638(Out)
1/3 (with short)	1237(In) 639(Out)
1/4 (short)	598
2/1	1243
2/2	1370
2/3	1212
3/1	279
3/2	39
3/3	111
3/4	331
4/1 (short)	335
4/2 (with short)	672(In) 337(Out)
4/3	1061
4/4 (with short)	2068(In) 1089(Out)
4/5 (short)	979
5/1	262
6/1	1173
6/2	1104
6/3	435
6/4	1013
7/1	391
7/2	376
8/1 8/2	159 34
9/1	95
(short)	456(In)
(with short) 9/3 (with short)	361(Out) 769(In)
9/4	385(Out) 384
(short) 10/1	1268
10/2	1104
11/1	693
11/2	755

850			
842			
157			
314(In) 157(Out)			
239			
674(In) 336(Out)			
338			
850			
842			
646			
732			
735(In) 573(Out)			
162			
361			
385			
384			
285			
347			
351			
352			
376			
1172			
1420			
979			

Junction: M1 Junction 15								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ıration Flo	N	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ıration Flov	N	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ıration Flo	N	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ıration Flo	N	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	8.4 % 91.6 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ıration Flo	N	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane uses a directly entered Saturation Flow						2120
6/3 (M1 Northbound Circulatory Lane 3)	This lane uses a directly entered Saturation Flow						2120	2120
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow						2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)	Infinite Saturation Flow						Inf	Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	75.5 % 24.5 %	1941	1941
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2			Infinite	Saturation Flow			Inf	Inf
15/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	w	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
16/2		This lane	2000	2000				
16/3		This lane uses a directly entered Saturation Flow						2000
17/1		This lane uses a directly entered Saturation Flow						2000
17/2		This lane uses a directly entered Saturation Flow						2000
17/3		This lane uses a directly entered Saturation Flow						2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane uses a directly entered Saturation Flow						2120
19/3		This lane	2120	2120				

Scenario 5: '2031 Updated NSTM Background - PM ' (FG2: '2031 Updated NSTM background - PM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination							
		Α	В	С	D	Е	Tot.	
	Α	24	302	843	1097	1129	3395	
	В	0	0	94	53	143	290	
Origin	С	1196	27	0	74	0	1297	
	D	1473	5	23	1	721	2223	
	Е	1258	83	0	406	0	1747	
	Tot.	3951	417	960	1631	1993	8952	

Traffic La	ne Flows
Lane	Scenario 5: 2031 Updated NSTM Background - PM
Junction: N	//1 Junction 15
1/1 (short)	400
1/2 (with short)	824(In) 424(Out)
1/3 (with short)	923(In) 434(Out)
1/4 (short)	489
2/1	1242
2/2	1345
2/3	1364
3/1	128
3/2	10
3/3	186
4/1 (short)	221 572
4/2 (with short)	1145(In) 573(Out)
4/3	618
4/4 (with short)	1632(In) 952(Out)
4/5 (short)	680
5/1	417
6/1	809
6/2	748
6/3	473
6/4	823
7/1	377
7/2 8/1	583 147
8/2	147
9/1 (short)	74
9/2 (with short)	430(In) 356(Out)
9/3 (with short)	867(In) 403(Out)
9/4 (short)	464
10/1	883
10/2	748
11/1	641
11/2	655

12/1	1001			
12/2	992			
13/1 (short)	360			
13/2 (with short)	721(In) 361(Out)			
13/3	462			
13/4 (with short)	1040(In) 518(Out)			
13/5 (short)	522			
14/1	1001			
14/2	992			
15/1	842			
15/2	921			
15/3 (with short)	986(In) 930(Out)			
15/4 (short)	56			
16/1	356			
16/2	403			
16/3	464			
17/1	486			
17/2	518			
17/3	522			
18/1	283			
18/2	583			
19/1	804			
19/2	1173			
19/3	680			

Lane Saturation Flows Junction: M1 Junction 15								
Lane	Lane Width	Gradient	Nearside	Allowed	Turning Radius	Turning	Sat Flow	Flared Sat Flow
Lane	(m)	Gradient	Lane	Turns	(m)	Prop.	(PCU/Hr)	(PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ıration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	52.8 % 47.2 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane uses a directly entered Saturation Flow						2120
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow						2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)	Infinite Saturation Flow						Inf	Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	36.1 % 63.9 %	1904	1904
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2			Infinite	Saturation Flow			Inf	Inf
15/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/2		This lane	2000	2000				
16/3		This lane uses a directly entered Saturation Flow						2000
17/1		This lane uses a directly entered Saturation Flow						2000
17/2		This lane uses a directly entered Saturation Flow						2000
17/3		This lane uses a directly entered Saturation Flow						2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane uses a directly entered Saturation Flow						2120
19/3		This lane	2120	2120				

Scenario 6: '2031 Updated NSTM +mez@50% - PM ' (FG4: '2031 Updated NSTM +mez@50% - PM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination							
		Α	В	С	D	Е	Tot.	
	Α	24	302	843	1117	1129	3415	
	В	0	0	94	53	143	290	
Origin	С	1196	27	0	84	0	1307	
	D	1524	5	46	1	741	2317	
	Е	1258	83	0	420	0	1761	
	Tot.	4002	417	983	1675	2013	9090	

Traffic Lane Flows							
Lane	Scenario 6: 2031 Updated NSTM +mez@50% - PM						
Junction: M1 Junction							
1/1 (short)	395						
1/2 (with short)	824(In) 429(Out)						
1/3 (with short)	937(In) 434(Out)						
1/4 (short)	503						
2/1	1272						
2/2	1364						
2/3	1366						
3/1	137						
3/2	24						
3/3	195						
3/4	226						
4/1 (short)	572						
4/2 (with short)	1145(In) 573(Out)						
4/3	633						
4/4 (with short)	1637(In) 957(Out)						
4/5 (short)	680						
5/1	417						
6/1	833						
6/2	758						
6/3	473						
6/4	823						
7/1	386						
7/2	597						
8/1	147						
9/1 (short)	84						
9/2 (with short)	445(In) 361(Out)						
9/3 (with short)	862(In) 395(Out)						
9/4 (short)	467						
10/1	917						
10/2	758						
11/1	632						
11/2	664						

12/1	1002					
12/2	1011					
13/1 (short)	370					
13/2 (with short)	741(In) 371(Out)					
13/3	492					
13/4 (with short)	1084(In) 540(Out)					
13/5 (short)	544					
14/1	1002					
14/2	1011					
15/1	877					
15/2	935					
15/3 (with short)	1011(In) 932(Out)					
15/4 (short)	79					
16/1	361					
16/2	395					
16/3	467					
17/1	516					
17/2	540					
17/3	544					
18/1	292					
18/2	597					
19/1	828					
19/2	1183					
19/3	680					

Lane Saturation Flows Junction: M1 Junction 15								
Lane	Lane Width	Gradient	Nearside	Allowed	Turning Radius	Turning	Sat Flow	Flared Sat Flow
Lane	(m)	Gradient	Lane	Turns	(m)	Prop.	(PCU/Hr)	(PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ıration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ıration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ıration Flo	V	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	52.8 % 47.2 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)	Infinite Saturation Flow					Inf	Inf	
6/1 (M1 Northbound Circulatory Lane 1)		This lane uses a directly entered Saturation Flow					2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane uses a directly entered Saturation Flow					2120	2120
6/3 (M1 Northbound Circulatory Lane 3)	This lane uses a directly entered Saturation Flow					2120	2120	
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow				2120	2120		
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow				Inf	Inf		
7/2 (M1 Southbound Onslip Lane 2)	Infinite Saturation Flow					Inf	Inf	
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	36.1 % 63.9 %	1904	1904
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Υ	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1		Infinite Saturation Flow						Inf
14/2		Infinite Saturation Flow						Inf
15/1		This lane uses a directly entered Saturation Flow						2000
15/2		This lane uses a directly entered Saturation Flow					2000	2000
15/3		This lane uses a directly entered Saturation Flow					2000	2000
15/4		This lane uses a directly entered Saturation Flow					2000	2000
16/1		This lane uses a directly entered Saturation Flow					2000	2000
16/2		This lane uses a directly entered Saturation Flow					2000	2000
16/3		This lane uses a directly entered Saturation Flow					2000	2000
17/1		This lane uses a directly entered Saturation Flow					2000	2000
17/2		This lane uses a directly entered Saturation Flow					2000	2000
17/3		This lane uses a directly entered Saturation Flow					2000	2000
18/1		This lane uses a directly entered Saturation Flow					2000	2000
18/2		This lane uses a directly entered Saturation Flow					2000	2000
19/1		This lane uses a directly entered Saturation Flow					2000	2000
19/2		This lane uses a directly entered Saturation Flow					2120	2120
19/3		This lane uses a directly entered Saturation Flow					2120	2120

Scenario 7: '2031 Updated NSTM +mez ITP - PM ' (FG8: '2031 Updated NSTM +mez ITP - PM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination						
		Α	В	С	D	Е	Tot.
	Α	24	302	843	1119	1129	3417
	В	0	0	94	53	143	290
Origin	С	1196	27	0	88	0	1311
	D	1518	5	46	1	741	2311
	Е	1258	83	0	421	0	1762
	Tot.	3996	417	983	1682	2013	9091

Traffic Lane Flows					
Lane	Scenario 7: 2031 Updated NSTM +mez ITP - PM				
Junction: N	/11 Junction 15				
1/1 (short)	394				
1/2 (with short)	823(In) 429(Out)				
1/3 (with short)	939(In) 435(Out)				
1/4 (short)	504				
2/1	1268				
2/2	1355				
2/3	1373				
3/1	141				
3/2	20				
3/3	197				
3/4	225				
4/1 (short)	572				
4/2 (with short)	1145(In) 573(Out)				
4/3	629				
4/4 (with short)	1643(In) 961(Out)				
4/5 (short)	682				
5/1	417				
6/1	831				
6/2	763				
6/3	471				
6/4	825				
7/1	390				
7/2	593				
8/1	147				
8/2	143				
9/1 (short)	88				
9/2 (with short)	449(In) 361(Out)				
9/3 (with short)	862(In) 387(Out)				
9/4 (short)	475				
10/1	919				
10/2	763				
11/1	635				
11/2	661				

12/1 1005 12/2 1008 13/1 370 (short) 370 13/2 741(In)	
13/1 (short) 370 13/2 741(In)	
(short) 370 13/2 741(In)	
(with short) 371(Out)	
13/3 489	
13/4 1081(In) (with short) 539(Out)	
13/5 (short) 542	
14/1 1005	
14/2 1008	
15/1 874	
15/2 926	
15/3 1017(In) (with short) 938(Out)	
15/4 (short) 79	
16/1 361	
16/2 387	
16/3 475	
17/1 513	
17/2 539	
17/3 542	
18/1 296	
18/2 593	
19/1 826	
19/2 1186	
19/3 682	

Lane Saturation Flows

Junction: M1 Junction 15								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ration Flov	N	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ration Flov	N	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	52.8 % 47.2 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ration Flov	V	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ration Flov	V	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane uses a directly entered Saturation Flow						2120
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow						2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)	Infinite Saturation Flow						Inf	Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	36.1 % 63.9 %	1904	1904
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105

9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1			Infinite	Saturation Flow			Inf	Inf
14/2		Infinite Saturation Flow						Inf
15/1		This lane uses a directly entered Saturation Flow						2000
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	w	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	w	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow .	2000	2000
16/2		This lane uses a directly entered Saturation Flow						2000
16/3	This lane uses a directly entered Saturation Flow						2000	2000
17/1		This lane uses a directly entered Saturation Flow						2000
17/2		This lane uses a directly entered Saturation Flow						2000
17/3		This lane uses a directly entered Saturation Flow						2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane uses a directly entered Saturation Flow						2120
19/3		This lane uses a directly entered Saturation Flow						2120

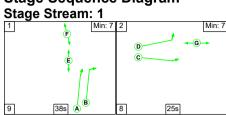
Scenario 8: '2031 Updated NSTM sensitivity test - PM ' (FG6: '2031 Updated NSTM sensitivity test - PM', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

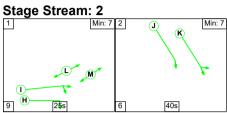
	Destination									
		Α	В	С	D	Е	Tot.			
	Α	24	302	843	1137	1129	3435			
	В	0	0	94	53	143	290			
Origin	С	1196	27	0	95	0	1318			
	D	1576	5	70	1	761	2413			
	Е	1258	83	0	433	0	1774			
	Tot.	4054	417	1007	1719	2033	9230			

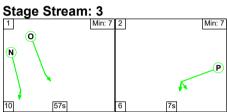
Traffic Lane Flows				
Lane	Scenario 8: 2031 Updated NSTM sensitivity test - PM			
Junction: N	//1 Junction 15			
1/1 (short)	393			
1/2 (with short)	823(In) 430(Out)			
1/3 (with short)	951(In) 435(Out)			
1/4 (short)	516			
2/1	1308			
2/2	1360			
2/3	1386			
3/1	156			
3/2	29			
3/3	200			
3/4	234			
4/1 (short)	572			
4/2 (with short)	1145(In) 573(Out)			
4/3	646			
4/4 (with short)	1644(In) 963(Out)			
4/5 (short)	681			
5/1	417			
6/1	849			
6/2	775			
6/3	472			
6/4	824			
7/1	405			
7/2	602			
8/1	147			
8/2	143			
9/1 (short)	95			
9/2 (with short)	461(In) 366(Out)			
9/3 (with short)	857(In) 369(Out)			
9/4 (short)	488			
10/1	944			
10/2	775			
11/1	628			
11/2	668			

12/1	1009					
12/2	1024					
13/1 (short)	381					
13/2 (with short)	761(In) 380(Out)					
13/3	525					
13/4 (with short)	1127(In) 561(Out)					
13/5 (short)	566					
14/1	1009					
14/2	1024					
15/1	915					
15/2	930					
15/3 (with short)	1054(In) 951(Out)					
15/4 (short)	103					
16/1	366					
16/2	369					
16/3	488					
17/1	549					
17/2	561					
17/3	566					
18/1	311					
18/2	602					
19/1	846					
19/2	1197					
19/3	681					

Lane Saturation Flows


Junction: M1 Junction 15								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (M1 Southbound Offslip)	3.65	0.00	Y	Arm 2 Left	Inf	100.0 %	1980	1980
1/2 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/3 (M1 Southbound Offslip)	3.65	0.00	N	Arm 2 Left	Inf	100.0 %	2120	2120
1/4 (M1 Southbound Offslip Lane 4)		This lane	uses a dire	ctly entered Satu	ration Flov	N	4000	4000
2/1 (A45 Northbound Lane 1)			Infinite S	Saturation Flow			Inf	Inf
2/2 (A45 Northbound Lane 2)			Infinite S	Saturation Flow			Inf	Inf
2/3 (A45 Northbound Lane 3)			Infinite S	Saturation Flow			Inf	Inf
3/1		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/2		This lane	uses a dire	ctly entered Satu	ration Flov	V	1900	1900
3/3		This lane	uses a dire	ctly entered Satu	ration Flov	N	1900	1900
3/4		This lane	uses a dire	ctly entered Satu	ration Flov	N	1900	1900
4/1 (A45 Southbound)	3.65	0.00	Y	Arm 5 Left Arm 18 Ahead	Inf Inf	52.8 % 47.2 %	1980	1980
4/2 (A45 Southbound)	3.65	0.00	N	Arm 18 Ahead	Inf	100.0 %	2120	2120
4/3 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/4 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
4/5 (A45 Southbound)	3.65	0.00	N	Arm 19 Ahead	Inf	100.0 %	2120	2120
5/1 (Saxon Avenue Exit Lane 1)			Infinite S	Saturation Flow			Inf	Inf
6/1 (M1 Northbound Circulatory Lane 1)		This lane	uses a dire	ctly entered Satu	ration Flov	V	2120	2120
6/2 (M1 Northbound Circulatory Lane 2)		This lane	uses a dire	ctly entered Satu	ration Flov	V	2120	2120
6/3 (M1 Northbound Circulatory Lane 3)		This lane uses a directly entered Saturation Flow						2120
6/4 (M1 Northbound Circulatory Lane 4)	This lane uses a directly entered Saturation Flow						2120	2120
7/1 (M1 Southbound Onslip Lane 1)	Infinite Saturation Flow						Inf	Inf
7/2 (M1 Southbound Onslip Lane 2)	Infinite Saturation Flow						Inf	Inf
8/1 (Saxon Avenue)	3.50	0.00	Y	Arm 6 Left Arm 7 Left	Inf 30.00	36.1 % 63.9 %	1904	1904
8/2 (Saxon Avenue)	3.50	0.00	N	Arm 6 Left	Inf	100.0 %	2105	2105


9/1 (M1 Northbound Offslip)	3.65	0.00	Y	Arm 10 Left	Inf	100.0 %	1980	1980
9/2 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/3 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
9/4 (M1 Northbound Offslip)	3.65	0.00	N	Arm 16 Ahead	Inf	100.0 %	2120	2120
10/1			Infinite	Saturation Flow			Inf	Inf
10/2			Infinite	Saturation Flow			Inf	Inf
11/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
11/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	1900	1900
12/1 (Toucan Crossing)	3.80	0.00	Y	Arm 14 Ahead	Inf	100.0 %	1995	1995
12/2 (Toucan Crossing)	3.80	0.00	Υ	Arm 14 Ahead	Inf	100.0 %	1995	1995
13/1 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/2 (A508 Northampton Rd)	3.65	0.00	Y	Arm 12 Ahead	Inf	100.0 %	1980	1980
13/3 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/4 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
13/5 (A508 Northampton Rd)	3.65	0.00	N	Arm 17 Ahead	Inf	100.0 %	2120	2120
14/1				Inf	Inf			
14/2				Inf	Inf			
15/1		This lane	ow	2000	2000			
15/2		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/3		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
15/4		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/1		This lane	uses a dir	ectly entered Satur	ation Flo	ow	2000	2000
16/2		This lane uses a directly entered Saturation Flow						2000
16/3	This lane uses a directly entered Saturation Flow						2000	2000
17/1		This lane uses a directly entered Saturation Flow						2000
17/2		This lane uses a directly entered Saturation Flow						2000
17/3		This lane uses a directly entered Saturation Flow						2000
18/1		This lane uses a directly entered Saturation Flow						2000
18/2		This lane uses a directly entered Saturation Flow						2000
19/1		This lane uses a directly entered Saturation Flow						2000
19/2		This lane uses a directly entered Saturation Flow						2120
19/3		This lane uses a directly entered Saturation Flow						2120

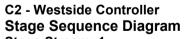

Scenario 1: '2031 Updated NSTM Background - AM' (FG1: '2031 Updated NSTM background - AM', Plan 1: 'Network Control Plan 1')

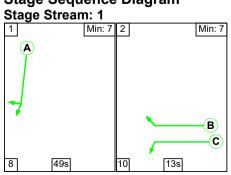
C1 - Eastside Controller

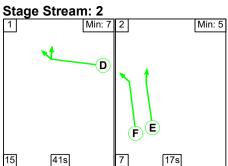
Stage Sequence Diagram

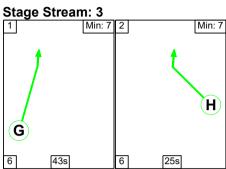
Stage Timings

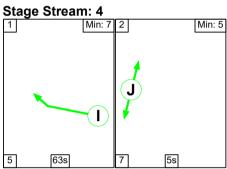
Stage Stream: 1


Stage	1	2
Duration	38	25
Change Point	67	34


Stage Stream: 2


Stage	1	2
Duration	25	40
Change Point	38	72


Stage	1	2
Duration	57	7
Change Point	47	34


Signal Timings Diagram 0 10 20 30 40 50 60 70 80 34 67 2 8:25 9:38 ABCDEFG ABCDEFG 38 72 6:40 9:25 Н Н j K J K L L M M 34 47 10 : 57 6:7 N O P N O P 0 10 20 30 40 50 60 70 80

Stage Timings Stage Stream: 1

Stage	1	2
Duration	49	13
Change Point	20	77

Stage Stream: 2

Stage	1	2
Duration	41	17
Change Point	6	62

Stage Stream: 3

Stage	1	2
Duration	43	25
Change Point	35	4

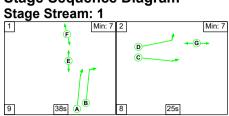
Jugo Otroum 4							
Stage	1	2					
Duration	63	5					
Change Point	17	5					

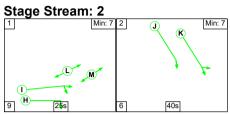
Signal Timings Diagram 0 10 20 30 40 50 60 70 80 77 2 20 10:13 8:49 A C $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ 5 17 2 7:5 1 5:63 <u>J</u> | $I_{\underline{J}}$ Phases 62 6 2 15 : 41 7:17 D F $\mathsf{E}\,\overset{\mathsf{D}}{\mathsf{F}}$ 4 35 2 6:25 6:43 $G_{\underline{H}}$ _H G 0 10 20 30 50 70 40 60 80

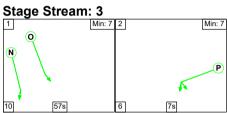
Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	96.7%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	96.7%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	26	-	1237	2120:1980	716+668	89.3 : 89.5%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	26:28	-	1189	2120:4000	716+620	89.0 : 89.0%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	26	-	269	1900	641	41.9%
3/2	Right	U	1:2	N/A	C1:I		1	26	-	29	1900	641	4.5%
3/3	Right	U	1:2	N/A	C1:H		1	25	-	123	1900	618	19.9%
3/4	Right	U	1:2	N/A	C1:H		1	25	-	273	1900	618	44.2%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	40	-	672	2120:1980	1027+1015	32.8 : 33.0%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	1004	2120	1113	90.2%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	2049	2120:2120	1035+1085	96.7 : 96.7%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1151	2120	1325	86.9%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1004	2120	1325	75.8%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	291	2120	1325	22.0%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	1157	2120	1325	87.3%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	85	1921	192	44.2%

8/2	Saxon Avenue Left	U	1:3	N/A	C1:P	1	7	-	108	2105	210	51.3%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C	1	15:13	-	406	2120:1980	424+46	86.3 : 86.3%
9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	15	-	764	2120:2120	424+424	91.7 : 88.4%
11/1	Ahead	U	2:2	N/A	C2:D	1	41	-	598	1900	997	59.9%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	41	-	850	1900	997	85.2%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	745	1995	1596	46.7%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	928	1995	1596	58.1%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	25	-	295	1980:1980	549+546	26.9 : 26.9%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	221	2120	530	41.7%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	642	2120:2120	530+530	60.6 : 60.6%
15/1	Ahead	U	1:1	N/A	C1:A	1	38	-	638	2000	975	65.4%
15/2	Ahead	U	1:1	N/A	C1:A	1	38	-	714	2000	975	73.2%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	38	-	711	2000:2000	881+220	64.6 : 64.6%
16/1	Right	U	2:3	N/A	C2:H	1	25	-	366	2000	650	56.3%
16/2	Right	U	2:3	N/A	C2:H	1	25	-	389	2000	650	59.8%
16/3	Right	U	2:3	N/A	C2:H	1	25	-	375	2000	650	57.7%
17/1	Ahead	U	2:3	N/A	C2:G	1	43	-	272	2000	1100	24.7%
17/2	Ahead	U	2:3	N/A	C2:G	1	43	-	325	2000	1100	29.5%
17/3	Ahead	U	2:3	N/A	C2:G	1	43	-	336	2000	1100	30.5%
18/1	Ahead	U	1:3	N/A	C1:O	1	60	-	342	2000	1525	22.4%
18/2	Ahead	U	1:3	N/A	C1:O	1	60	-	366	2000	1525	24.0%
19/1	Ahead	U	1:3	N/A	C1:N	1	57	-	1127	2000	1450	77.7%
19/2	Ahead	U	1:3	N/A	C1:N	1	57	-	1273	2120	1537	82.8%
19/3	Ahead	U	1:3	N/A	C1:N	1	57	-	1049	2120	1537	68.2%


ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	76.9	32.8	0.0	109.7	-	-	-	-
M1 Junction 15	-	-	0	0	0	76.9	32.8	0.0	109.7	-	-	-	-
1/2+1/1	1237	1237	-	-	-	8.6	4.0	-	12.6 (6.5+6.1)	36.8 (36.8:36.8)	13.3	4.0	17.3
1/3+1/4	1189	1189	-	-	-	7.3	3.9	-	11.2 (6.5+4.7)	33.9 (36.8:30.5)	13.3	3.9	17.1
3/1	269	269	-	-	-	0.9	0.0	-	0.9	12.7	5.1	0.0	5.1
3/2	29	29	-	-	-	0.3	0.0	-	0.3	35.7	0.6	0.0	0.6
3/3	123	123	-	-	-	0.2	0.0	-	0.2	5.9	1.7	0.0	1.7
3/4	273	273	-	-	-	0.2	0.0	-	0.2	2.4	4.7	0.0	4.7
4/2+4/1	672	672	-	-	-	2.1	0.2	-	2.4 (1.2+1.2)	12.7 (12.6:12.8)	4.3	0.2	4.6
4/3	1004	1004	-	-	-	4.8	4.3	-	9.1	32.5	20.1	4.3	24.4
4/4+4/5	2049	2049	-	-	-	10.0	11.0	-	21.0 (10.1+10.8)	36.8 (36.4:37.2)	21.9	11.0	32.9
6/1	1151	1151	-	-	-	4.1	0.0	-	4.1	13.0	20.0	0.0	20.0
6/2	1004	1004	-	-	-	3.9	0.0	-	3.9	13.8	17.2	0.0	17.2
6/3	291	291	-	-	-	0.3	0.1	-	0.4	5.5	3.2	0.1	3.3
6/4	1157	1157	-	-	-	3.9	0.0	-	3.9	12.3	21.8	0.0	21.8
8/1	85	85	-	-	-	0.8	0.4	-	1.2	50.6	1.8	0.4	2.2
8/2	108	108	-	-	-	1.0	0.5	-	1.5	51.5	2.3	0.5	2.8
9/2+9/1	406	406	-	-	-	3.5	2.9	-	6.4 (5.8+0.6)	56.3 (56.6:53.5)	7.8	2.9	10.7
9/3+9/4	764	764	-	-	-	6.6	4.1	-	10.8 (5.5+5.3)	50.7 (50.9:50.6)	8.4	4.1	12.6
11/1	598	598	-	-	-	1.4	0.0	-	1.4	8.5	3.4	0.0	3.4
11/2	850	850	-	-	-	2.6	0.0	-	2.6	11.1	6.0	0.0	6.0
12/1	745	745	-	-	-	0.1	0.0	-	0.1	0.3	0.4	0.0	0.4
12/2	928	928	-	-	-	0.1	0.0	-	0.1	0.2	0.5	0.0	0.5

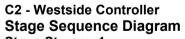

13/2+13/1	295	295	-	-	-	1.6	0.2	-	1.8 (0.9+0.9)	22.0 (22.0:22.0)	2.4	0.2	2.6
13/3	221	221	-	-	-	1.5	0.4	-	1.9	30.9	4.1	0.4	4.4
13/4+13/5	642	642	-	-	-	4.7	0.8	-	5.5 (2.7+2.7)	30.8 (30.8:30.8)	6.2	0.8	7.0
15/1	638	638	-	-	-	0.4	0.0	-	0.4	2.3	1.6	0.0	1.6
15/2	714	714	-	-	-	0.2	0.0	-	0.2	1.2	0.7	0.0	0.7
15/3+15/4	711	711	-	-	-	0.3	0.0	-	0.3 (0.2+0.1)	1.6 (1.5:1.7)	0.8	0.0	0.8
16/1	366	366	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/2	389	389	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
16/3	375	375	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
17/1	272	272	-	-	-	0.2	0.0	-	0.2	3.3	0.9	0.0	0.9
17/2	325	325	-	-	-	0.3	0.0	-	0.3	3.3	0.7	0.0	0.7
17/3	336	336	-	-	-	0.3	0.0	-	0.3	3.6	1.0	0.0	1.0
18/1	342	342	-	-	-	0.2	0.0	-	0.2	1.8	1.5	0.0	1.5
18/2	366	366	-	-	-	0.2	0.0	-	0.2	2.0	1.5	0.0	1.5
19/1	1127	1127	-	-	-	1.7	0.0	-	1.7	5.3	6.4	0.0	6.4
19/2	1273	1273	-	-	-	1.2	0.0	-	1.2	3.5	8.2	0.0	8.2
19/3	1049	1049	-	-	-	1.0	0.0	-	1.0	3.6	3.9	0.0	3.9
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	Stream: Stream: Stream: Stream: Stream:	1 PRC for Signa 2 PRC for Signa 3 PRC for Signa 1 PRC for Signa 2 PRC for Signa 3 PRC for Signa 4 PRC for Signa PRC Over	lled Lanes (%): lled Lanes (%): lled Lanes (%): lled Lanes (%): lled Lanes (%):	-7.4 T 8.7 T -1.9 T 5.6 T 50.4 T	otal Delay for Single D	ignalled Lanes () ignalled Lanes () ignalled Lanes () ignalled Lanes () ignalled Lanes () ignalled Lanes () ignalled Lanes () ignalled Lanes () Over All Lanes()	beuHr): 34.01 beuHr): 7.06 beuHr): 29.51 beuHr): 13.24 beuHr): 1.01 beuHr): 0.12	Cycle Tim Cycle Tim Cycle Tim Cycle Tim Cycle Tim Cycle Tim Cycle Tim Cycle Tim Cycle Tim	ne (s): 80 ne (s): 80 ne (s): 80 ne (s): 80 ne (s): 80			

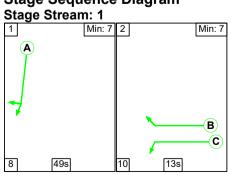

Scenario 2: '2031 Updated NSTM +mez@50% - AM' (FG3: '2031 Updated NSTM +mez@50% - AM', Plan 1: 'Network Control Plan 1')

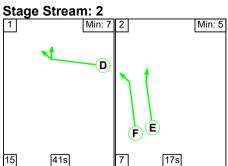
C1 - Eastside Controller

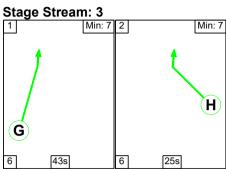
Stage Sequence Diagram

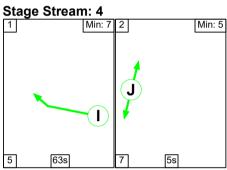
Stage Timings Stage Stream: 1


Stage	1	2
Duration	38	25
Change Point	67	34


Stage Stream: 2


Stage	1	2
Duration	25	40
Change Point	38	72


Stage	1	2
Duration	57	7
Change Point	47	34


Signal Timings Diagram 0 10 20 30 40 50 60 70 80 34 67 2 8:25 9:38 ABCDEFG ABCDEFG 38 72 6:40 9:25 Н Н j K J K L L M M 34 47 10 : 57 6:7 N O P N O P 0 10 20 30 40 50 60 70 80

Stage Timings Stage Stream: 1

Stage	1	2
Duration	49	13
Change Point	20	77

Stage Stream: 2

Stage	1	2
Duration	41	17
Change Point	6	62

Stage Stream: 3

Stage	1	2
Duration	43	25
Change Point	35	4

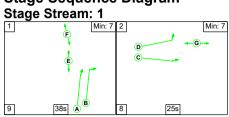
Jugo Otrounn 4							
Stage	1	2					
Duration	63	5					
Change Point	17	5					

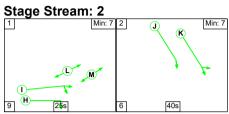
Signal Timings Diagram 0 10 20 30 40 50 60 70 80 77 2 20 10:13 8:49 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 62 6 2 15:41 7:17 $\mathsf{E}\,\overset{\mathsf{D}}{\mathsf{F}}$ P F Phases 35 1 2 6:25 6:43 G <u>H</u> <u>H</u> G 17 5 7:5 5:63 J J 10 20 30 50 70 0 40 60 80

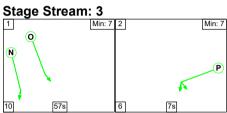
Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	97.4%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	97.4%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	26	-	1236	2120:1980	716+668	89.3 : 89.3%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	26:28	-	1213	2120:4000	716+645	89.2 : 89.2%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	26	-	273	1900	641	42.6%
3/2	Right	U	1:2	N/A	C1:I		1	26	-	35	1900	641	5.5%
3/3	Right	U	1:2	N/A	C1:H		1	25	-	122	1900	618	19.8%
3/4	Right	U	1:2	N/A	C1:H		1	25	-	297	1900	618	48.1%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	40	-	672	2120:1980	1027+1015	32.8 : 33.0%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	1027	2120	1113	92.3%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	2064	2120:2120	1019+1101	97.4 : 97.4%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1165	2120	1325	87.9%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1051	2120	1325	79.3%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	267	2120	1325	20.2%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	1181	2120	1325	89.1%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	84	1920	192	43.8%

8/2	Saxon Avenue Left	U	1:3	N/A	C1:P	1	7	-	109	2105	210	51.8%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C	1	15:13	-	413	2120:1980	424+82	81.6 : 81.6%
9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	15	-	784	2120:2120	424+424	92.5 : 92.5%
11/1	Ahead	U	2:2	N/A	C2:D	1	41	-	655	1900	997	65.7%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	41	-	793	1900	997	79.5%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	807	1995	1596	50.6%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	875	1995	1596	54.8%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	25	-	304	1980:1980	549+549	27.7 : 27.7%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	230	2120	530	43.4%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	658	2120:2120	530+530	61.9 : 62.3%
15/1	Ahead	U	1:1	N/A	C1:A	1	38	-	622	2000	975	63.8%
15/2	Ahead	U	1:1	N/A	C1:A	1	38	-	730	2000	975	74.9%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	38	-	736	2000:2000	878+228	66.5 : 66.5%
16/1	Right	U	2:3	N/A	C2:H	1	25	-	346	2000	650	53.2%
16/2	Right	U	2:3	N/A	C2:H	1	25	-	392	2000	650	60.3%
16/3	Right	U	2:3	N/A	C2:H	1	25	-	392	2000	650	60.3%
17/1	Ahead	U	2:3	N/A	C2:G	1	43	-	276	2000	1100	25.1%
17/2	Ahead	U	2:3	N/A	C2:G	1	43	-	338	2000	1100	30.7%
17/3	Ahead	U	2:3	N/A	C2:G	1	43	-	344	2000	1100	31.3%
18/1	Ahead	U	1:3	N/A	C1:O	1	60	-	346	2000	1525	22.7%
18/2	Ahead	U	1:3	N/A	C1:O	1	60	-	372	2000	1525	24.4%
19/1	Ahead	U	1:3	N/A	C1:N	1	57	-	1149	2000	1450	79.2%
19/2	Ahead	U	1:3	N/A	C1:N	1	57	-	1289	2120	1537	83.9%
19/3	Ahead	U	1:3	N/A	C1:N	1	57	-	1072	2120	1537	69.7%


Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	79.3	35.9	0.0	115.3	-	-	-	-
M1 Junction 15	-	-	0	0	0	79.3	35.9	0.0	115.3	-	-	-	-
1/2+1/1	1236	1236	-	-	-	8.6	4.0	-	12.6 (6.5+6.1)	36.7 (36.7:36.7)	13.3	4.0	17.3
1/3+1/4	1213	1213	-	-	-	7.5	3.9	-	11.4 (6.5+4.9)	33.8 (36.7:30.6)	13.3	3.9	17.2
3/1	273	273	-	-	-	1.0	0.0	-	1.0	13.0	5.2	0.0	5.2
3/2	35	35	-	-	-	0.3	0.0	-	0.3	35.7	0.8	0.0	8.0
3/3	122	122	-	-	-	0.2	0.0	-	0.2	5.9	1.6	0.0	1.6
3/4	297	297	-	-	-	0.2	0.0	-	0.2	2.6	5.2	0.0	5.2
4/2+4/1	672	672	-	-	-	2.1	0.2	-	2.4 (1.2+1.2)	12.7 (12.6:12.8)	4.3	0.2	4.6
4/3	1027	1027	-	-	-	5.0	5.3	-	10.3	36.1	20.8	5.3	26.1
4/4+4/5	2064	2064	-	-	-	10.1	12.7	-	22.8 (10.8+12.0)	39.8 (39.1:40.4)	22.6	12.7	35.3
6/1	1165	1165	-	-	-	4.5	0.0	-	4.5	13.9	20.3	0.0	20.3
6/2	1051	1051	-	-	-	4.3	0.0	-	4.3	14.6	18.1	0.0	18.1
6/3	267	267	-	-	-	0.3	0.1	-	0.4	5.4	2.8	0.1	2.9
6/4	1181	1181	-	-	-	3.9	0.0	-	3.9	12.0	21.9	0.0	21.9
8/1	84	84	-	-	-	0.8	0.4	-	1.2	50.5	1.7	0.4	2.1
8/2	109	109	-	-	-	1.0	0.5	-	1.6	51.7	2.3	0.5	2.8
9/2+9/1	413	413	-	-	-	3.5	2.1	-	5.6 (4.7+0.9)	48.7 (49.1:46.7)	7.3	2.1	9.4
9/3+9/4	784	784	-	-	-	6.8	5.3	-	12.1 (6.1+6.1)	55.6 (55.6:55.6)	8.5	5.3	13.8
11/1	655	655	-	-	-	1.7	0.0	-	1.7	9.1	3.9	0.0	3.9
11/2	793	793	-	-	-	2.5	0.0	-	2.5	11.5	5.9	0.0	5.9
12/1	807	807	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5
12/2	875	875	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5

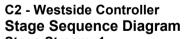

13/2+13/1	304	304	-	-	-	1.7	0.2	-	1.9 (0.9+0.9)	22.0 (22.0:22.0)	2.4	0.2	2.6
13/3	230	230	-	-	-	1.6	0.4	-	2.0	31.2	4.3	0.4	4.7
13/4+13/5	658	658	-	-	-	4.9	0.8	-	5.7 (2.8+2.9)	31.1 (31.1:31.1)	6.5	0.8	7.3
15/1	622	622	-	-	-	0.4	0.0	-	0.4	2.2	1.5	0.0	1.5
15/2	730	730	-	-	-	0.3	0.0	-	0.3	1.4	0.9	0.0	0.9
15/3+15/4	736	736	-	-	-	0.3	0.0	-	0.3 (0.2+0.1)	1.5 (1.4:1.7)	0.7	0.0	0.7
16/1	346	346	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/2	392	392	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
16/3	392	392	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
17/1	276	276	-	-	-	0.2	0.0	-	0.2	3.1	8.0	0.0	0.8
17/2	338	338	-	-	-	0.3	0.0	-	0.3	3.5	0.9	0.0	0.9
17/3	344	344	-	-	-	0.3	0.0	-	0.3	3.6	1.0	0.0	1.0
18/1	346	346	-	-	-	0.2	0.0	-	0.2	1.8	1.6	0.0	1.6
18/2	372	372	-	-	-	0.2	0.0	-	0.2	2.0	1.6	0.0	1.6
19/1	1149	1149	-	-	-	1.9	0.0	-	1.9	5.8	6.9	0.0	6.9
19/2	1289	1289	-	-	-	1.2	0.0	-	1.2	3.4	8.6	0.0	8.6
19/3	1072	1072	-	-	-	1.2	0.0	-	1.2	4.0	4.4	0.0	4.4
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	1 - Eastside Controller Stream: 2 PRC for Signalled Lanes (%): -8.2 Total Delay for Signalled Lanes (pcuHr): 37.22 Cycle Time (s): 80 1 - Eastside Controller Stream: 3 PRC for Signalled Lanes (%): 7.3 Total Delay for Signalled Lanes (pcuHr): 7.39 Cycle Time (s): 80 2 - Westside Controller Stream: 1 PRC for Signalled Lanes (%): -2.7 Total Delay for Signalled Lanes (pcuHr): 30.79 Cycle Time (s): 80 2 - Westside Controller Stream: 2 PRC for Signalled Lanes (%): -2.7 Total Delay for Signalled Lanes (pcuHr): 30.79 Cycle Time (s): 80 2 - Westside Controller Stream: 3 PRC for Signalled Lanes (%): 49.2 Total Delay for Signalled Lanes (pcuHr): 13.73 Cycle Time (s): 80 3 - Cycle Time (s): 80 4 - Cycle Time (s): 80 5 - Cycle Time (s): 80 6 - Cycle Time (s): 80 7 - Cycle Time (s): 8											

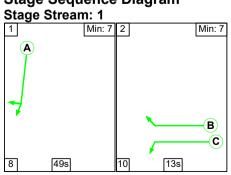

Scenario 3: '2031 Updated NSTM +mez ITP - AM' (FG7: '2031 Updated NSTM +mez ITP - AM', Plan 1: 'Network Control Plan 1')

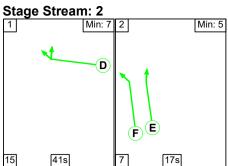
C1 - Eastside Controller

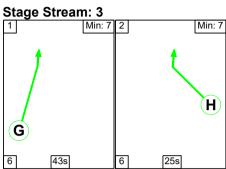
Stage Sequence Diagram

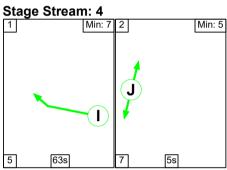
Stage Timings Stage Stream: 1


Stage	1	2
Duration	38	25
Change Point	67	34


Stage Stream: 2


Stage	1	2
Duration	25	40
Change Point	38	72


Stage	1	2
Duration	57	7
Change Point	47	34


Signal Timings Diagram 0 10 20 30 40 50 60 70 80 34 67 2 8:25 9:38 ABCDEFG ABCDEFG 38 72 6:40 9:25 Н Н j K J K L L M M 34 47 10 : 57 6:7 N O P N O P 0 10 20 30 40 50 60 70 80

Stage Timings Stage Stream: 1

Stage	1	2
Duration	49	13
Change Point	20	77

Stage Stream: 2

Stage	1	2
Duration	41	17
Change Point	6	62

Stage Stream: 3

Stage	1	2
Duration	43	25
Change Point	35	4

Jugo Otroum +						
Stage	1	2				
Duration	63	5				
Change Point	17	5				

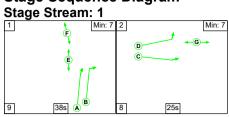
Signal Timings Diagram 0 10 20 30 40 50 60 70 80 77 2 20 10:13 8:49 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 62 6 2 15:41 7:17 $\mathsf{E}\,\overset{\mathsf{D}}{\mathsf{F}}$ P F Phases 35 1 2 6:25 6:43 G <u>H</u> <u>H</u> G 17 5 7:5 5:63 J J 10 20 30 50 70 0 40 60 80

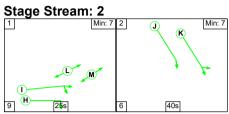
Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	97.5%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	97.5%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	26	-	1236	2120:1980	716+668	89.3 : 89.3%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	26:28	-	1219	2120:4000	716+652	89.2 : 89.2%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	26	-	274	1900	641	42.7%
3/2	Right	U	1:2	N/A	C1:I		1	26	-	37	1900	641	5.8%
3/3	Right	U	1:2	N/A	C1:H		1	25	-	127	1900	618	20.6%
3/4	Right	U	1:2	N/A	C1:H		1	25	-	298	1900	618	48.3%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	40	-	672	2120:1980	1027+1015	32.8 : 33.0%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	1036	2120	1113	93.1%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	2066	2120:2120	1092+1028	97.5 : 97.5%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1163	2120	1325	87.8%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1070	2120	1325	80.8%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	412	2120	1325	31.1%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	1036	2120	1325	78.2%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	159	1941	194	81.9%

8/2	Saxon Avenue Left	U	1:3	N/A	C1:P	1	7	-	34	2105	210	16.2%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C	1	15:13	-	434	2120:1980	424+89	84.7 : 84.7%
9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	15	-	771	2120:2120	424+424	90.8 : 91.0%
11/1	Ahead	U	2:2	N/A	C2:D	1	41	-	695	1900	997	69.7%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	41	-	753	1900	997	75.5%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	848	1995	1596	53.1%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	837	1995	1596	52.4%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	25	-	307	1980:1980	549+546	28.0 : 28.0%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	233	2120	530	44.0%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	663	2120:2120	530+530	62.5 : 62.6%
15/1	Ahead	U	1:1	N/A	C1:A	1	38	-	637	2000	975	65.3%
15/2	Ahead	U	1:1	N/A	C1:A	1	38	-	725	2000	975	74.4%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	38	-	734	2000:2000	875+234	66.1 : 66.1%
16/1	Right	U	2:3	N/A	C2:H	1	25	-	359	2000	650	55.2%
16/2	Right	U	2:3	N/A	C2:H	1	25	-	385	2000	650	59.2%
16/3	Right	U	2:3	N/A	C2:H	1	25	-	386	2000	650	59.4%
17/1	Ahead	U	2:3	N/A	C2:G	1	43	-	278	2000	1100	25.3%
17/2	Ahead	U	2:3	N/A	C2:G	1	43	-	340	2000	1100	30.9%
17/3	Ahead	U	2:3	N/A	C2:G	1	43	-	348	2000	1100	31.6%
18/1	Ahead	U	1:3	N/A	C1:O	1	60	-	347	2000	1525	22.8%
18/2	Ahead	U	1:3	N/A	C1:O	1	60	-	374	2000	1525	24.5%
19/1	Ahead	U	1:3	N/A	C1:N	1	57	-	1163	2000	1450	80.2%
19/2	Ahead	U	1:3	N/A	C1:N	1	57	-	1362	2120	1537	88.6%
19/3	Ahead	U	1:3	N/A	C1:N	1	57	-	1002	2120	1537	65.2%

ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	79.8	37.7	0.0	117.6	-	-	-	
M1 Junction 15	-	-	0	0	0	79.8	37.7	0.0	117.6	-	-	-	-
1/2+1/1	1236	1236	-	-	-	8.6	4.0	-	12.6 (6.5+6.1)	36.7 (36.7:36.7)	13.3	4.0	17.3
1/3+1/4	1219	1219	-	-	-	7.5	3.9	-	11.4 (6.5+4.9)	33.8 (36.7:30.6)	13.3	3.9	17.2
3/1	274	274	-	-	-	1.0	0.0	-	1.0	13.1	5.2	0.0	5.2
3/2	37	37	-	-	-	0.4	0.0	-	0.4	35.7	0.8	0.0	0.8
3/3	127	127	-	-	-	0.2	0.0	-	0.2	5.7	1.6	0.0	1.6
3/4	298	298	-	-	-	0.2	0.0	-	0.2	2.6	5.2	0.0	5.2
4/2+4/1	672	672	-	-	-	2.1	0.2	-	2.4 (1.2+1.2)	12.7 (12.6:12.8)	4.3	0.2	4.6
4/3	1036	1036	-	-	-	5.1	5.8	-	10.9	37.9	21.3	5.8	27.1
4/4+4/5	2066	2066	-	-	-	10.1	12.9	-	23.1 (12.0+11.0)	40.2 (40.7:39.7)	22.5	12.9	35.4
6/1	1163	1163	-	-	-	4.7	0.0	-	4.7	14.6	20.3	0.0	20.3
6/2	1070	1070	-	-	-	5.0	0.0	-	5.0	17.0	19.1	0.0	19.1
6/3	412	412	-	-	-	0.4	0.2	-	0.6	5.0	3.7	0.2	3.9
6/4	1036	1036	-	-	-	3.7	0.0	-	3.7	13.0	20.2	0.0	20.2
8/1	159	159	-	-	-	1.6	2.0	-	3.6	81.3	3.4	2.0	5.5
8/2	34	34	-	-	-	0.3	0.1	-	0.4	43.2	0.7	0.1	8.0
9/2+9/1	434	434	-	-	-	3.7	2.6	-	6.3 (5.2+1.0)	51.9 (52.3:49.8)	7.7	2.6	10.3
9/3+9/4	771	771	-	-	-	6.7	4.5	-	11.2 (5.6+5.6)	52.2 (52.2:52.2)	8.4	4.5	12.8
11/1	695	695	-	-	-	1.3	0.0	-	1.3	6.6	3.9	0.0	3.9
11/2	753	753	-	-	-	1.9	0.0	-	1.9	9.0	4.4	0.0	4.4
12/1	848	848	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5
12/2	837	837	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5


					1	1		ı				1	
13/2+13/1	307	307	-	-	-	1.7	0.2	-	1.9 (0.9+0.9)	22.1 (22.1:22.1)	2.5	0.2	2.7
13/3	233	233	-	-	-	1.6	0.4	-	2.0	31.3	4.3	0.4	4.7
13/4+13/5	663	663	-	-	-	4.9	0.8	-	5.7 (2.9+2.9)	31.2 (31.2:31.2)	6.5	0.8	7.4
15/1	637	637	-	-	-	0.4	0.0	-	0.4	2.1	1.5	0.0	1.5
15/2	725	725	-	-	-	0.3	0.0	-	0.3	1.4	0.8	0.0	0.8
15/3+15/4	734	734	-	-	-	0.3	0.0	-	0.3 (0.2+0.1)	1.6 (1.5:1.7)	0.8	0.0	0.8
16/1	359	359	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/2	385	385	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
16/3	386	386	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
17/1	278	278	-	-	-	0.2	0.0	-	0.2	3.1	8.0	0.0	0.8
17/2	340	340	-	-	-	0.3	0.0	-	0.3	3.4	0.8	0.0	0.8
17/3	348	348	-	-	-	0.4	0.0	-	0.4	3.6	1.0	0.0	1.0
18/1	347	347	-	-	-	0.2	0.0	-	0.2	1.8	1.7	0.0	1.7
18/2	374	374	-	-	-	0.2	0.0	-	0.2	2.0	1.7	0.0	1.7
19/1	1163	1163	-	-	-	2.0	0.0	-	2.0	6.0	7.2	0.0	7.2
19/2	1362	1362	-	-	-	1.9	0.0	-	1.9	5.1	10.4	0.0	10.4
19/3	1002	1002	-	-	-	0.7	0.0	-	0.7	2.6	2.8	0.0	2.8
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	Stream: Stream: Stream: Stream: Stream:	1 PRC for Signa 2 PRC for Signa 3 PRC for Signa 1 PRC for Signa 2 PRC for Signa 3 PRC for Signa 4 PRC for Signa PRC Over	lled Lanes (%): lled Lanes (%): lled Lanes (%): lled Lanes (%): lled Lanes (%):	-8.3 T 1.6 T -1.2 T 19.2 T 51.6 T	otal Delay for Si otal Delay for Si otal Delay for Si otal Delay for Si otal Delay for Si otal Delay for Si	ignalled Lanes (pignall	becuHr): 38.12 becuHr): 8.97 becuHr): 31.50 becuHr): 12.80 becuHr): 1.04 becuHr): 0.13	Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin Cycle Tin	ne (s): 80 ne (s): 80 ne (s): 80 ne (s): 80 ne (s): 80			

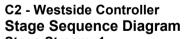

Scenario 4: '2031 Updated NSTM sensitivity test - AM' (FG5: '2031 Updated NSTM sensitivity test - AM', Plan 1:

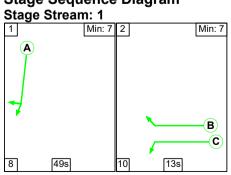

'Network Control Plan 1')

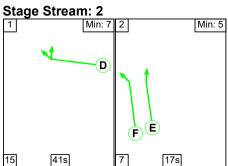
C1 - Eastside Controller

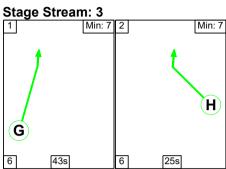
Stage Sequence Diagram

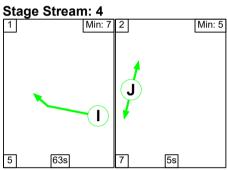
Stage Timings Stage Stream: 1


Stage	1	2
Duration	38	25
Change Point	67	34


Stage Stream: 2


Stage	1	2
Duration	25	40
Change Point	38	72


Stage	1	2
Duration	57	7
Change Point	47	34


Signal Timings Diagram 0 10 20 30 40 50 60 70 80 34 67 2 8:25 9:38 ABCDEFG ABCDEFG 38 72 6:40 9:25 Н Н j K J K L L M M 34 47 10 : 57 6:7 N O P N O P 0 10 20 30 40 50 60 70 80

Stage Timings Stage Stream: 1

Stage	1	2
Duration	49	13
Change Point	20	77

Stage Stream: 2

Stage	1	2
Duration	41	17
Change Point	6	62

Stage Stream: 3

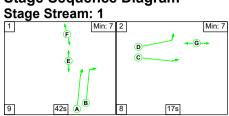
Stage	1	2
Duration	43	25
Change Point	35	4

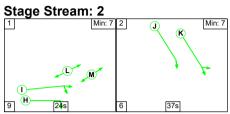
Jugo Otroum +						
Stage	1	2				
Duration	63	5				
Change Point	17	5				

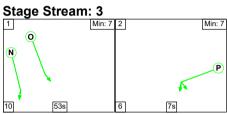
Signal Timings Diagram 0 10 20 30 40 50 60 70 80 77 2 20 10:13 8:49 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 62 6 2 15:41 7:17 $\mathsf{E}\,\overset{\mathsf{D}}{\mathsf{F}}$ P F Phases 35 1 2 6:25 6:43 G <u>H</u> <u>H</u> G 17 5 7:5 5:63 J J 10 20 30 50 70 0 40 60 80

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	97.8%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	97.8%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	26	-	1235	2120:1980	716+668	89.2 : 89.3%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	26:28	-	1237	2120:4000	716+670	89.3 : 89.3%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	26	-	279	1900	641	43.5%
3/2	Right	U	1:2	N/A	C1:I		1	26	-	39	1900	641	6.1%
3/3	Right	U	1:2	N/A	C1:H		1	25	-	111	1900	618	18.0%
3/4	Right	U	1:2	N/A	C1:H		1	25	-	331	1900	618	53.6%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	40	-	672	2120:1980	1027+1015	32.8 : 33.0%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	1061	2120	1113	95.3%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	41	-	2068	2120:2120	1113+1004	97.8 : 97.5%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1173	2120	1325	88.5%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	49	-	1104	2120	1325	83.3%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	435	2120	1325	32.8%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	49	-	1013	2120	1325	76.5%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	159	1941	194	81.9%

8/2	Saxon Avenue Left	U	1:3	N/A	C1:P	1	7	-	34	2105	210	16.2%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C	1	15:13	-	456	2120:1980	424+112	85.1 : 85.1%
9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	15	-	769	2120:2120	424+424	90.8 : 90.6%
11/1	Ahead	U	2:2	N/A	C2:D	1	41	-	693	1900	997	69.5%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	41	-	755	1900	997	75.7%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	850	1995	1596	53.3%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	63	-	842	1995	1596	52.8%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	25	-	314	1980:1980	549+549	28.6 : 28.6%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	239	2120	530	45.1%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	19	-	674	2120:2120	530+530	63.4 : 63.8%
15/1	Ahead	U	1:1	N/A	C1:A	1	38	-	646	2000	975	66.3%
15/2	Ahead	U	1:1	N/A	C1:A	1	38	-	732	2000	975	75.1%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	38	-	735	2000:2000	871+246	65.8 : 65.8%
16/1	Right	U	2:3	N/A	C2:H	1	25	-	361	2000	650	55.5%
16/2	Right	U	2:3	N/A	C2:H	1	25	-	385	2000	650	59.2%
16/3	Right	U	2:3	N/A	C2:H	1	25	-	384	2000	650	59.1%
17/1	Ahead	U	2:3	N/A	C2:G	1	43	-	285	2000	1100	25.9%
17/2	Ahead	U	2:3	N/A	C2:G	1	43	-	347	2000	1100	31.5%
17/3	Ahead	U	2:3	N/A	C2:G	1	43	-	351	2000	1100	31.9%
18/1	Ahead	U	1:3	N/A	C1:O	1	60	-	352	2000	1525	23.1%
18/2	Ahead	U	1:3	N/A	C1:O	1	60	-	376	2000	1525	24.7%
19/1	Ahead	U	1:3	N/A	C1:N	1	57	-	1172	2000	1450	80.8%
19/2	Ahead	U	1:3	N/A	C1:N	1	57	-	1420	2120	1537	92.4%
19/3	Ahead	U	1:3	N/A	C1:N	1	57	-	979	2120	1537	63.7%


ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	81.9	40.5	0.0	122.4	-	-	-	-
M1 Junction 15	-	-	0	0	0	81.9	40.5	0.0	122.4	-	-	-	-
1/2+1/1	1235	1235	-	-	-	8.6	3.9	-	12.6 (6.5+6.1)	36.6 (36.6:36.6)	13.3	3.9	17.2
1/3+1/4	1237	1237	-	-	-	7.6	4.0	-	11.6 (6.5+5.1)	33.8 (36.7:30.7)	13.3	4.0	17.3
3/1	279	279	-	-	-	1.1	0.0	-	1.1	13.6	5.4	0.0	5.4
3/2	39	39	-	-	-	0.4	0.0	-	0.4	35.6	0.9	0.0	0.9
3/3	111	111	-	-	-	0.2	0.0	-	0.2	6.3	1.3	0.0	1.3
3/4	331	331	-	-	-	0.3	0.0	-	0.3	3.0	6.0	0.0	6.0
4/2+4/1	672	672	-	-	-	2.1	0.2	-	2.4 (1.2+1.2)	12.7 (12.6:12.8)	4.3	0.2	4.6
4/3	1061	1061	-	-	-	5.3	7.8	-	13.2	44.7	22.4	7.8	30.2
4/4+4/5	2068	2068	-	-	-	10.2	13.6	-	23.8 (12.8+11.0)	41.4 (42.3:40.5)	23.6	13.6	37.2
6/1	1173	1173	-	-	-	4.9	0.0	-	4.9	14.9	20.5	0.0	20.5
6/2	1104	1104	-	-	-	5.8	0.0	-	5.8	18.9	20.1	0.0	20.1
6/3	435	435	-	-	-	0.4	0.2	-	0.6	5.1	3.8	0.2	4.1
6/4	1013	1013	-	-	-	3.7	0.0	-	3.7	13.2	20.1	0.0	20.1
8/1	159	159	-	-	-	1.6	2.0	-	3.6	81.3	3.4	2.0	5.5
8/2	34	34	-	-	-	0.3	0.1	-	0.4	43.2	0.7	0.1	0.8
9/2+9/1	456	456	-	-	-	3.8	2.7	-	6.5 (5.2+1.3)	51.6 (52.0:49.8)	7.7	2.7	10.4
9/3+9/4	769	769	-	-	-	6.7	4.4	-	11.1 (5.5+5.5)	51.8 (51.8:51.8)	8.3	4.4	12.7
11/1	693	693	-	-	-	1.3	0.0	-	1.3	6.6	4.3	0.0	4.3
11/2	755	755	-	-	-	1.8	0.0	-	1.8	8.4	4.1	0.0	4.1
12/1	850	850	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5
12/2	842	842	-	-	-	0.1	0.0	-	0.1	0.3	0.5	0.0	0.5

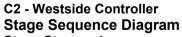

13/2+13/1	314	314	-	-	-	1.7	0.2	-	1.9 (1.0+1.0)	22.1 (22.1:22.1)	2.5	0.2	2.7
13/3	239	239	-	-	-	1.7	0.4	-	2.1	31.5	4.4	0.4	4.9
13/4+13/5	674	674	-	-	-	5.0	0.9	-	5.9 (2.9+2.9)	31.4 (31.4:31.4)	6.7	0.9	7.5
15/1	646	646	-	-	-	0.4	0.0	-	0.4	2.1	1.5	0.0	1.5
15/2	732	732	-	-	-	0.3	0.0	-	0.3	1.4	0.9	0.0	0.9
15/3+15/4	735	735	-	-	-	0.3	0.0	-	0.3 (0.2+0.1)	1.5 (1.4:1.7)	0.7	0.0	0.7
16/1	361	361	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/2	385	385	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
16/3	384	384	-	-	-	0.0	0.0	-	0.0	0.4	0.5	0.0	0.5
17/1	285	285	-	-	-	0.2	0.0	-	0.2	3.1	8.0	0.0	0.8
17/2	347	347	-	-	-	0.3	0.0	-	0.3	3.5	0.9	0.0	0.9
17/3	351	351	-	-	-	0.3	0.0	-	0.3	3.6	0.9	0.0	0.9
18/1	352	352	-	-	-	0.2	0.0	-	0.2	1.9	1.8	0.0	1.8
18/2	376	376	-	-	-	0.2	0.0	-	0.2	2.0	1.7	0.0	1.7
19/1	1172	1172	-	-	-	2.1	0.0	-	2.1	6.5	7.5	0.0	7.5
19/2	1420	1420	-	-	-	2.3	0.0	-	2.3	5.7	11.9	0.0	11.9
19/3	979	979	-	-	-	0.6	0.0	-	0.6	2.2	2.4	0.0	2.4
	C1 - Eastside Controller Stream: 1 PRC for Signalled Lanes (%): 0.7 Total Delay for Signalled Lanes (pcuHr): 25.14 Cycle Time (s): 80 C1 - Eastside Controller Stream: 2 PRC for Signalled Lanes (%): -8.7 Total Delay for Signalled Lanes (pcuHr): 41.24 Cycle Time (s): 80 C1 - Eastside Controller Stream: 3 PRC for Signalled Lanes (%): -2.7 Total Delay for Signalled Lanes (pcuHr): 9.36 Cycle Time (s): 80 C2 - Westside Controller Stream: 1 PRC for Signalled Lanes (%): -0.9 Total Delay for Signalled Lanes (pcuHr): 32.59 Cycle Time (s): 80 C2 - Westside Controller Stream: 2 PRC for Signalled Lanes (%): 18.9 Total Delay for Signalled Lanes (pcuHr): 12.93 Cycle Time (s): 80 C2 - Westside Controller Stream: 3 PRC for Signalled Lanes (%): 51.9 Total Delay for Signalled Lanes (pcuHr): 12.93 Cycle Time (s): 80 C2 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 0.13 Cycle Time (s): 80 C2 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C3 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C4 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C5 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C7 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C8 - Westside Controller Stream: 4 PRC for Signalled Lanes (%): 69.0 Total Delay for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C9 - Westside Controller Stream: 4 PRC for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C9 - Westside Controller Stream: 4 PRC for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C9 - Westside Controller Stream: 4 PRC for Signalled Lanes (pcuHr): 1.06 Cycle Time (s): 80 C9 - Wes												

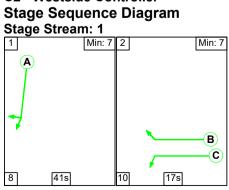

Scenario 5: '2031 Updated NSTM Background - PM ' (FG2: '2031 Updated NSTM background - PM', Plan 1: 'Network Control Plan 1')

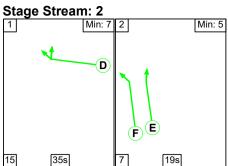
C1 - Eastside Controller

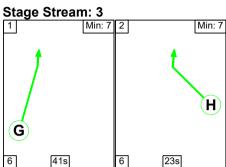
Stage Sequence Diagram

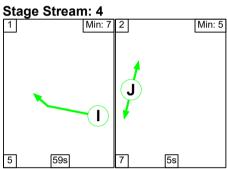
Stage Timings Stage Stream: 1


Stage	1	2		
Duration	42	17		
Change Point	4	55		


Stage Stream: 2


Stage	1	2		
Duration	24	37		
Change Point	47	4		


Stage	1	2
Duration	53	7
Change Point	58	45


Signal Timings Diagram 40 0 30 50 70 10 20 60 55 4 2 9:42 8:17 ABCDEFG ABCDEFG 47 4 6:37 9:24 Η Н J K L J K L M M 45 58 10:53 6:7 N O P N O P 70 10 40 0 20 30 50 60

Stage Timings Stage Stream: 1

Stage	1	2
Duration	41	17
Change Point	24	73

Stage Stream: 2

Stage	1	2
Duration	35	19
Change Point	9	59

Stage Stream: 3

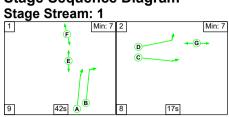
Stage	1	2
Duration	41	23
Change Point	33	4

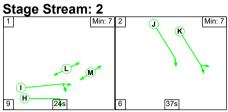
otago otroann +								
Stage	1	2						
Duration	59	5						
Change Point	18	6						

Signal Timings Diagram 0 10 20 30 40 50 60 70 73 2 24 10:17 8:41 A C $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ 6 18 2 7:5 1 5:59 <u>J</u> I ۱ <u>၂</u> Phases 9 59 2 15 : 35 7:19 $\mathsf{E}\,\stackrel{\mathsf{D}}{\mathsf{F}}$ P F 33 4 6:23 6:41 G_H _H G 0 10 20 30 40 70 50 60

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	87.5%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	87.5%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	18	-	824	2120:1980	530+495	80.0 : 80.8%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	18:20	-	923	2120:4000	530+597	81.9 : 81.9%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	25	-	128	1900	650	19.7%
3/2	Right	U	1:2	N/A	C1:I		1	25	-	10	1900	650	1.5%
3/3	Right	U	1:2	N/A	C1:H		1	24	-	186	1900	625	29.8%
3/4	Right	U	1:2	N/A	C1:H		1	24	-	221	1900	625	35.4%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	37	-	1145	2120:1980	1025+990	55.9 : 57.8%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	618	2120	1088	56.8%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	1632	2120:2120	1088+883	87.5 : 77.0%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	809	2120	1172	69.1%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	748	2120	1172	63.8%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	473	2120	1172	40.4%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	823	2120	1172	70.2%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	147	1904	200	73.3%
8/2	Saxon Avenue Left	U	1:3	N/A	C1:P		1	7	-	143	2105	222	64.5%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C		1	19:17	-	430	2120:1980	558+116	63.8 : 63.8%

9/3+9/4	M1 Northbound	U	2:1	N/A	C2:B	1	19	_	867	2120:2120	558+558	72.2 :
	Offslip Ahead											83.2%
11/1	Ahead	U	2:2	N/A	C2:D	1	35	-	641	1900	900	71.2%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	35	-	655	1900	900	72.8%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1001	1995	1575	63.6%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	992	1995	1575	63.0%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	27	-	721	1980:1980	604+602	59.8 : 59.8%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	21	-	462	2120	614	75.3%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	21	-	1040	2120:2120	614+614	84.4 : 85.1%
15/1	Ahead	U	1:1	N/A	C1:A	1	42	-	842	2000	1132	74.4%
15/2	Ahead	U	1:1	N/A	C1:A	1	42	-	921	2000	1132	81.4%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	42	-	986	2000:2000	1104+66	84.3 : 84.3%
16/1	Right	U	2:3	N/A	C2:H	1	23	-	356	2000	632	56.4%
16/2	Right	U	2:3	N/A	C2:H	1	23	-	403	2000	632	63.8%
16/3	Right	U	2:3	N/A	C2:H	1	23	-	464	2000	632	73.5%
17/1	Ahead	U	2:3	N/A	C2:G	1	41	-	486	2000	1105	44.0%
17/2	Ahead	U	2:3	N/A	C2:G	1	41	-	518	2000	1105	46.9%
17/3	Ahead	U	2:3	N/A	C2:G	1	41	-	522	2000	1105	47.2%
18/1	Ahead	U	1:3	N/A	C1:O	1	56	-	283	2000	1500	18.9%
18/2	Ahead	U	1:3	N/A	C1:O	1	56	-	583	2000	1500	38.9%
19/1	Ahead	U	1:3	N/A	C1:N	1	53	-	804	2000	1421	56.6%
19/2	Ahead	U	1:3	N/A	C1:N	1	53	-	1173	2120	1506	77.9%
19/3	Ahead	U	1:3	N/A	C1:N	1	53	-	680	2120	1506	45.1%


Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	77.1	18.0	0.0	95.1	-	-	-	-
M1 Junction 15	-	-	0	0	0	77.1	18.0	0.0	95.1	-	-	-	-
1/2+1/1	824	824	-	-	-	6.1	2.0	-	8.1 (4.2+4.0)	35.5 (35.5:35.6)	8.4	2.0	10.4
1/3+1/4	923	923	-	-	-	6.3	2.2	-	8.5 (4.3+4.3)	33.3 (35.5:31.3)	8.6	2.2	10.8
3/1	128	128	-	-	-	0.3	0.0	-	0.3	9.6	1.0	0.0	1.0
3/2	10	10	-	-	-	0.1	0.0	-	0.1	22.5	0.1	0.0	0.1
3/3	186	186	-	-	-	0.2	0.0	-	0.2	3.3	0.3	0.0	0.3
3/4	221	221	-	-	-	0.2	0.0	-	0.2	3.2	0.3	0.0	0.3
4/2+4/1	1145	1145	-	-	-	4.2	0.7	-	4.9 (2.4+2.5)	15.3 (15.1:15.4)	8.4	0.7	9.1
4/3	618	618	-	-	-	2.2	0.7	-	2.8	16.5	8.9	0.7	9.6
4/4+4/5	1632	1632	-	-	-	6.8	2.4	-	9.2 (5.7+3.5)	20.3 (21.6:18.5)	17.7	2.4	20.1
6/1	809	809	-	-	-	4.0	0.0	-	4.0	17.9	17.0	0.0	17.0
6/2	748	748	-	-	-	3.1	0.0	-	3.1	14.7	14.8	0.0	14.8
6/3	473	473	-	-	-	0.6	0.3	-	1.0	7.3	5.9	0.3	6.2
6/4	823	823	-	-	-	1.9	0.0	-	1.9	8.4	14.2	0.0	14.2
8/1	147	147	-	-	-	1.3	1.3	-	2.7	65.1	3.0	1.3	4.3
8/2	143	143	-	-	-	1.3	0.9	-	2.2	55.0	2.9	0.9	3.7
9/2+9/1	430	430	-	-	-	2.9	0.9	-	3.8 (3.2+0.6)	31.8 (32.1:30.4)	6.6	0.9	7.5
9/3+9/4	867	867	-	-	-	6.3	1.7	-	8.0 (3.7+4.3)	33.1 (32.6:33.6)	9.2	1.7	10.9
11/1	641	641	-	-	-	1.2	0.0	-	1.2	6.9	5.5	0.0	5.5
11/2	655	655	-	-	-	1.3	0.0	-	1.3	7.1	2.7	0.0	2.7
12/1	1001	1001	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3
12/2	992	992	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3

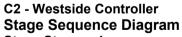

13/2+13/1	721	721	-	-	-	3.7	0.7	-	4.5 (2.2+2.2)	22.2 (22.2:22.2)	5.8	0.7	6.6
13/3	462	462	-	-	-	3.1	1.5	-	4.6	36.2	8.9	1.5	10.3
13/4+13/5	1040	1040	-	-	-	7.3	2.7	-	10.0 (5.0+5.0)	34.8 (34.7:34.8)	10.3	2.7	13.0
15/1	842	842	-	-	-	1.8	0.0	-	1.8	7.6	14.6	0.0	14.6
15/2	921	921	-	-	-	1.6	0.0	-	1.6	6.3	15.2	0.0	15.2
15/3+15/4	986	986	-	-	-	1.5	0.0	-	1.5 (1.5+0.0)	5.5 (5.7:2.9)	16.3	0.0	16.3
16/1	356	356	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/2	403	403	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/3	464	464	-	-	-	0.1	0.0	-	0.1	0.4	0.5	0.0	0.5
17/1	486	486	-	-	-	1.4	0.0	-	1.4	10.5	3.2	0.0	3.2
17/2	518	518	-	-	-	2.0	0.0	-	2.0	13.7	4.3	0.0	4.3
17/3	522	522	-	-	-	2.0	0.0	-	2.0	13.9	4.4	0.0	4.4
18/1	283	283	-	-	-	0.1	0.0	-	0.1	1.6	0.8	0.0	0.8
18/2	583	583	-	-	-	0.3	0.0	-	0.3	1.9	1.3	0.0	1.3
19/1	804	804	-	-	-	0.4	0.0	-	0.4	1.8	1.5	0.0	1.5
19/2	1173	1173	-	-	-	0.5	0.0	-	0.5	1.6	2.2	0.0	2.2
19/3	680	680	-	-	-	0.3	0.0	-	0.3	1.8	1.3	0.0	1.3
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	C1 - Eastside Controller Stream: 2 PRC for Signalled Lanes (%): 2.8 Total Delay for Signalled Lanes (pcuHr): 17.67 Cycle Time (s): 76 C1 - Eastside Controller Stream: 3 PRC for Signalled Lanes (%): 15.6 Total Delay for Signalled Lanes (pcuHr): 6.55 Cycle Time (s): 76 C2 - Westside Controller Stream: 1 PRC for Signalled Lanes (%): 8.2 Total Delay for Signalled Lanes (pcuHr): 21.73 Cycle Time (s): 76 Cycle Time											

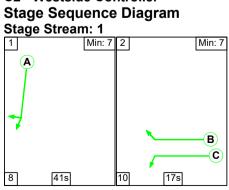

Scenario 6: '2031 Updated NSTM +mez@50% - PM' (FG4: '2031 Updated NSTM +mez@50% - PM', Plan 1: 'Network Control Plan 1')

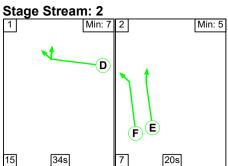
C1 - Eastside Controller

Stage Sequence Diagram

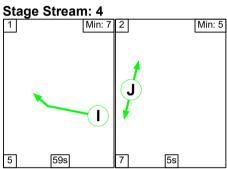
Stage Timings Stage Stream: 1


Stage	1	2
Duration	42	17
Change Point	4	55


Stage Stream: 2


Stage	1	2
Duration	24	37
Change Point	47	4

Stage	1	2
Duration	53	7
Change Point	58	45


Signal Timings Diagram 40 0 30 50 70 10 20 60 55 4 2 9:42 8:17 ABCDEFG ABCDEFG 47 4 6:37 9:24 Η Н J K L J K L M M 45 58 10:53 6:7 N O P N O P 70 10 40 0 20 30 50 60

Stage Timings Stage Stream: 1

Stage	1	2
Duration	41	17
Change Point	24	73

Stage Stream: 2

Stage	1	2
Duration	34	20
Change Point	10	59

Stage Stream: 3

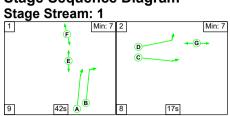
Stage	1	2
Duration	41	23
Change Point	33	4

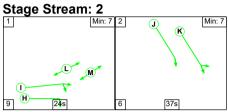
otago otroanni i									
Stage	1	2							
Duration	59	5							
Change Point	19	7							

Signal Timings Diagram 0 10 20 30 40 50 60 70 73 2 24 10 : 17 8:41 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 59 2 10 1 15:34 7:20 $\mathsf{E}\,\stackrel{\mathsf{D}}{\mathsf{F}}$ P F Phases 33 6:23 6:41 G <u>H</u> <u>H</u> G 19 7 2 7:5 5:59 <u>J</u> I J 10 20 30 40 60 0 50 70

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	88.0%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	88.0%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	18	-	824	2120:1980	530+495	80.9 : 79.8%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	18:20	-	937	2120:4000	530+614	81.9 : 81.9%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	25	-	137	1900	650	21.1%
3/2	Right	U	1:2	N/A	C1:I		1	25	-	24	1900	650	3.7%
3/3	Right	U	1:2	N/A	C1:H		1	24	-	195	1900	625	31.2%
3/4	Right	U	1:2	N/A	C1:H		1	24	-	226	1900	625	36.2%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	37	-	1145	2120:1980	1025+990	55.9 : 57.8%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	633	2120	1088	58.2%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	1637	2120:2120	1088+881	88.0 : 77.2%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	833	2120	1172	71.1%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	758	2120	1172	64.7%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	473	2120	1172	40.4%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	823	2120	1172	70.2%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	147	1904	200	73.3%
8/2	Saxon Avenue Left	U	1:3	N/A	C1:P		1	7	-	143	2105	222	64.5%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C		1	19:17	-	445	2120:1980	558+130	64.7 : 64.7%

9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	19	-	862	2120:2120	558+558	70.8 : 83.7%
11/1	Ahead	U	2:2	N/A	C2:D	1	34	-	632	1900	875	72.2%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	34	-	664	1900	875	75.9%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1002	1995	1575	63.6%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1011	1995	1575	64.2%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	28	-	741	1980:1980	617+616	60.1 : 60.1%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	492	2120	642	76.7%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	1084	2120:2120	642+642	84.2 : 84.8%
15/1	Ahead	U	1:1	N/A	C1:A	1	42	-	877	2000	1132	77.5%
15/2	Ahead	U	1:1	N/A	C1:A	1	42	-	935	2000	1132	82.6%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	42	-	1011	2000:2000	1090+92	85.5 : 85.5%
16/1	Right	U	2:3	N/A	C2:H	1	23	-	361	2000	632	57.2%
16/2	Right	U	2:3	N/A	C2:H	1	23	-	395	2000	632	62.5%
16/3	Right	U	2:3	N/A	C2:H	1	23	-	467	2000	632	73.9%
17/1	Ahead	U	2:3	N/A	C2:G	1	41	-	516	2000	1105	46.7%
17/2	Ahead	U	2:3	N/A	C2:G	1	41	-	540	2000	1105	48.9%
17/3	Ahead	U	2:3	N/A	C2:G	1	41	-	544	2000	1105	49.2%
18/1	Ahead	U	1:3	N/A	C1:O	1	56	-	292	2000	1500	19.5%
18/2	Ahead	U	1:3	N/A	C1:O	1	56	-	597	2000	1500	39.8%
19/1	Ahead	U	1:3	N/A	C1:N	1	53	-	828	2000	1421	58.3%
19/2	Ahead	U	1:3	N/A	C1:N	1	53	-	1183	2120	1506	78.5%
19/3	Ahead	U	1:3	N/A	C1:N	1	53	-	680	2120	1506	45.1%


Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	79.3	18.1	0.0	97.5	-	-	-	-
M1 Junction 15	-	-	0	0	0	79.3	18.1	0.0	97.5	-	-	-	-
1/2+1/1	824	824	-	-	-	6.1	2.0	-	8.1 (4.2+3.9)	35.5 (35.6:35.5)	8.5	2.0	10.5
1/3+1/4	937	937	-	-	-	6.4	2.2	-	8.6 (4.3+4.4)	33.2 (35.4:31.3)	8.6	2.2	10.8
3/1	137	137	-	-	-	0.4	0.0	-	0.4	10.6	1.1	0.0	1.1
3/2	24	24	-	-	-	0.2	0.0	-	0.2	22.7	0.4	0.0	0.4
3/3	195	195	-	-	-	0.2	0.0	-	0.2	3.3	0.3	0.0	0.3
3/4	226	226	-	-	-	0.2	0.0	-	0.2	3.2	0.3	0.0	0.3
4/2+4/1	1145	1145	-	-	-	4.2	0.7	-	4.9 (2.4+2.5)	15.3 (15.1:15.4)	8.4	0.7	9.1
4/3	633	633	-	-	-	2.3	0.7	-	3.0	16.8	9.1	0.7	9.8
4/4+4/5	1637	1637	-	-	-	6.9	2.4	-	9.3 (5.8+3.5)	20.5 (21.8:18.6)	17.8	2.4	20.2
6/1	833	833	-	-	-	4.2	0.0	-	4.2	18.3	17.5	0.0	17.5
6/2	758	758	-	-	-	3.1	0.0	-	3.1	14.9	15.0	0.0	15.0
6/3	473	473	-	-	-	0.6	0.3	-	1.0	7.3	5.6	0.3	5.9
6/4	823	823	-	-	-	1.9	0.0	-	1.9	8.4	14.2	0.0	14.2
8/1	147	147	-	-	-	1.3	1.3	-	2.7	65.1	3.0	1.3	4.3
8/2	143	143	-	-	-	1.3	0.9	-	2.2	55.0	2.9	0.9	3.7
9/2+9/1	445	445	-	-	-	3.0	0.9	-	3.9 (3.2+0.7)	31.9 (32.2:30.5)	6.7	0.9	7.6
9/3+9/4	862	862	-	-	-	6.2	1.7	-	7.9 (3.6+4.3)	33.0 (32.4:33.5)	9.2	1.7	10.9
11/1	632	632	-	-	-	1.2	0.0	-	1.2	7.0	4.5	0.0	4.5
11/2	664	664	-	-	-	1.4	0.0	-	1.4	7.4	2.8	0.0	2.8
12/1	1002	1002	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3
12/2	1011	1011	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3

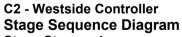

13/2+13/1	741	741	-	-	-	3.7	0.8	-	4.4 (2.2+2.2)	21.5 (21.5:21.5)	5.9	0.8	6.6
13/3	492	492	-	-	-	3.3	1.6	-	4.9	35.8	9.4	1.6	11.0
13/4+13/5	1084	1084	-	-	-	7.5	2.7	-	10.1 (5.0+5.1)	33.6 (33.6:33.7)	10.7	2.7	13.4
15/1	877	877	-	-	-	1.8	0.0	-	1.8	7.3	14.7	0.0	14.7
15/2	935	935	-	-	-	1.8	0.0	-	1.8	7.0	15.3	0.0	15.3
15/3+15/4	1011	1011	-	-	-	1.7	0.0	-	1.7 (1.6+0.1)	6.1 (6.3:3.8)	16.4	0.0	16.4
16/1	361	361	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/2	395	395	-	-	-	0.0	0.0	-	0.0	0.4	0.4	0.0	0.4
16/3	467	467	-	-	-	0.1	0.0	-	0.1	0.5	0.5	0.0	0.5
17/1	516	516	-	-	-	1.7	0.0	-	1.7	12.0	3.8	0.0	3.8
17/2	540	540	-	-	-	2.2	0.0	-	2.2	14.6	4.7	0.0	4.7
17/3	544	544	-	-	-	2.2	0.0	-	2.2	14.7	4.8	0.0	4.8
18/1	292	292	-	-	-	0.1	0.0	-	0.1	1.7	1.0	0.0	1.0
18/2	597	597	-	-	-	0.3	0.0	-	0.3	2.0	1.6	0.0	1.6
19/1	828	828	-	-	-	0.4	0.0	-	0.4	1.8	1.5	0.0	1.5
19/2	1183	1183	-	-	-	0.5	0.0	-	0.5	1.6	2.2	0.0	2.2
19/3	680	680	-	-	-	0.3	0.0	-	0.3	1.8	1.3	0.0	1.3
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	1 - Eastside Controller Stream: 2 PRC for Signalled Lanes (%): 2.3 Total Delay for Signalled Lanes (pcuHr): 18.04 Cycle Time (\$\frac{1}{2}\$: 76 1 - Eastside Controller Stream: 3 PRC for Signalled Lanes (%): 14.6 Total Delay for Signalled Lanes (pcuHr): 6.59 Cycle Time (\$\frac{1}{2}\$: 76 2 - Westside Controller Stream: 1 PRC for Signalled Lanes (%): 7.5 Total Delay for Signalled Lanes (pcuHr): 22.07 Cycle Time (\$\frac{1}{2}\$: 76 2 - Westside Controller Stream: 2 PRC for Signalled Lanes (%): 7.5 Total Delay for Signalled Lanes (pcuHr): 22.06 Cycle Time (\$\frac{1}{2}\$: 76 2 - Westside Controller Stream: 3 PRC for Signalled Lanes (%): 21.7 Total Delay for Signalled Lanes (pcuHr): 6.26 Cycle Time (\$\frac{1}{2}\$: 76											

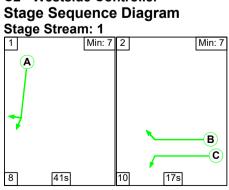
Scenario 7: '2031 Updated NSTM +mez ITP - PM' (FG8: '2031 Updated NSTM +mez ITP - PM', Plan 1: 'Network Control Plan 1')

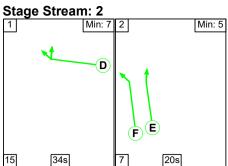
C1 - Eastside Controller

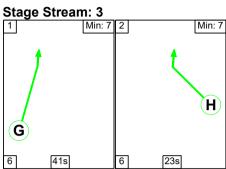
Stage Sequence Diagram

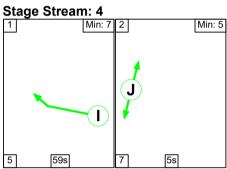
Stage Timings Stage Stream: 1


Stage	1	2
Duration	42	17
Change Point	4	55


Stage Stream: 2


Stage	1	2
Duration	24	37
Change Point	47	4


Stage	1	2
Duration	53	7
Change Point	58	45


Signal Timings Diagram 40 0 30 50 70 10 20 60 55 4 2 9:42 8:17 ABCDEFG ABCDEFG 47 4 6:37 9:24 Η Н J K L J K L M M 45 58 10:53 6:7 N O P N O P 70 10 40 0 20 30 50 60

Stage Timings Stage Stream: 1

Stage	1	2
Duration	41	17
Change Point	24	73

Stage Stream: 2

Stage	1	2
Duration	34	20
Change Point	10	59

Stage Stream: 3

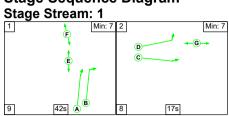
Stage	1	2
Duration	41	23
Change Point	33	4

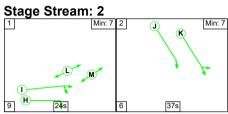
otago otroann i										
Stage	1	2								
Duration	59	5								
Change Point	19	7								

Signal Timings Diagram 0 10 20 30 40 50 60 70 73 2 24 10 : 17 8:41 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 59 2 10 1 15:34 7:20 $\mathsf{E}\,\stackrel{\mathsf{D}}{\mathsf{F}}$ P F Phases 33 6:23 6:41 G <u>H</u> <u>H</u> G 19 7 2 7:5 5:59 <u>J</u> I J 10 20 30 40 60 0 50 70

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	88.3%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	88.3%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	18	-	823	2120:1980	530+495	80.9 : 79.6%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	18:20	-	939	2120:4000	530+614	82.1 : 82.1%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	25	-	141	1900	650	21.7%
3/2	Right	U	1:2	N/A	C1:I		1	25	-	20	1900	650	3.1%
3/3	Right	U	1:2	N/A	C1:H		1	24	-	197	1900	625	31.5%
3/4	Right	U	1:2	N/A	C1:H		1	24	-	225	1900	625	36.0%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	37	-	1145	2120:1980	1025+990	55.9 : 57.8%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	629	2120	1088	57.8%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	1643	2120:2120	1088+880	88.3 : 77.5%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	831	2120	1172	70.9%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	763	2120	1172	65.1%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	471	2120	1172	40.2%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	825	2120	1172	70.4%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	147	1904	200	73.3%
8/2	Saxon Avenue Left	U	1:3	N/A	C1:P		1	7	-	143	2105	222	64.5%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C		1	19:17	-	449	2120:1980	558+136	64.7 : 64.7%

9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	19	-	862	2120:2120	558+558	69.4 : 85.1%
11/1	Ahead	U	2:2	N/A	C2:D	1	34	-	635	1900	875	72.6%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	34	-	661	1900	875	75.5%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1005	1995	1575	63.8%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1008	1995	1575	64.0%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	28	-	741	1980:1980	617+616	60.1 : 60.1%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	489	2120	642	76.2%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	1081	2120:2120	642+642	84.0 : 84.5%
15/1	Ahead	U	1:1	N/A	C1:A	1	42	-	874	2000	1132	77.2%
15/2	Ahead	U	1:1	N/A	C1:A	1	42	-	926	2000	1132	81.8%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	42	-	1017	2000:2000	1090+92	86.0 : 86.0%
16/1	Right	U	2:3	N/A	C2:H	1	23	-	361	2000	632	57.2%
16/2	Right	U	2:3	N/A	C2:H	1	23	-	387	2000	632	61.3%
16/3	Right	U	2:3	N/A	C2:H	1	23	-	475	2000	632	75.2%
17/1	Ahead	U	2:3	N/A	C2:G	1	41	-	513	2000	1105	46.4%
17/2	Ahead	U	2:3	N/A	C2:G	1	41	-	539	2000	1105	48.8%
17/3	Ahead	U	2:3	N/A	C2:G	1	41	-	542	2000	1105	49.0%
18/1	Ahead	U	1:3	N/A	C1:O	1	56	-	296	2000	1500	19.7%
18/2	Ahead	U	1:3	N/A	C1:O	1	56	-	593	2000	1500	39.5%
19/1	Ahead	U	1:3	N/A	C1:N	1	53	-	826	2000	1421	58.1%
19/2	Ahead	U	1:3	N/A	C1:N	1	53	-	1186	2120	1506	78.7%
19/3	Ahead	U	1:3	N/A	C1:N	1	53	-	682	2120	1506	45.3%


Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	79.3	18.1	0.0	97.4	-	-	-	-
M1 Junction 15	-	-	0	0	0	79.3	18.1	0.0	97.4	-	-	-	-
1/2+1/1	823	823	-	-	-	6.1	2.0	-	8.1 (4.2+3.9)	35.5 (35.5:35.4)	8.5	2.0	10.5
1/3+1/4	939	939	-	-	-	6.4	2.2	-	8.7 (4.3+4.4)	33.3 (35.5:31.4)	8.6	2.2	10.8
3/1	141	141	-	-	-	0.4	0.0	-	0.4	10.9	1.2	0.0	1.2
3/2	20	20	-	-	-	0.1	0.0	-	0.1	22.7	0.3	0.0	0.3
3/3	197	197	-	-	-	0.2	0.0	-	0.2	3.3	0.3	0.0	0.3
3/4	225	225	-	-	-	0.2	0.0	-	0.2	3.2	0.3	0.0	0.3
4/2+4/1	1145	1145	-	-	-	4.2	0.7	-	4.9 (2.4+2.5)	15.3 (15.1:15.4)	8.4	0.7	9.1
4/3	629	629	-	-	-	2.2	0.7	-	2.9	16.7	9.1	0.7	9.8
4/4+4/5	1643	1643	-	-	-	6.9	2.5	-	9.4 (5.9+3.5)	20.6 (21.9:18.7)	17.9	2.5	20.4
6/1	831	831	-	-	-	4.2	0.0	-	4.2	18.3	17.4	0.0	17.4
6/2	763	763	-	-	-	3.1	0.0	-	3.1	14.9	15.1	0.0	15.1
6/3	471	471	-	-	-	0.6	0.3	-	0.9	7.2	5.5	0.3	5.9
6/4	825	825	-	-	-	1.9	0.0	-	1.9	8.4	14.2	0.0	14.2
8/1	147	147	-	-	-	1.3	1.3	-	2.7	65.1	3.0	1.3	4.3
8/2	143	143	-	-	-	1.3	0.9	-	2.2	55.0	2.9	0.9	3.7
9/2+9/1	449	449	-	-	-	3.1	0.9	-	4.0 (3.2+0.7)	31.8 (32.2:30.5)	6.7	0.9	7.6
9/3+9/4	862	862	-	-	-	6.2	1.7	-	7.9 (3.5+4.4)	33.0 (32.2:33.6)	9.5	1.7	11.2
11/1	635	635	-	-	-	1.3	0.0	-	1.3	7.2	4.4	0.0	4.4
11/2	661	661	-	-	-	1.4	0.0	-	1.4	7.4	2.8	0.0	2.8
12/1	1005	1005	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3
12/2	1008	1008	-	-	-	0.2	0.0	-	0.2	0.7	1.3	0.0	1.3

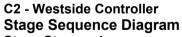

13/2+13/1	741	741	-	-	-	3.7	0.8	-	4.4 (2.2+2.2)	21.5 (21.5:21.5)	5.9	0.8	6.6
13/3	489	489	-	-	-	3.3	1.6	-	4.8	35.6	9.2	1.6	10.8
13/4+13/5	1081	1081	-	-	-	7.4	2.6	-	10.1 (5.0+5.0)	33.5 (33.5:33.5)	10.7	2.6	13.3
15/1	874	874	-	-	-	1.8	0.0	-	1.8	7.3	14.7	0.0	14.7
15/2	926	926	-	-	-	1.8	0.0	-	1.8	7.0	15.1	0.0	15.1
15/3+15/4	1017	1017	-	-	-	1.7	0.0	-	1.7 (1.6+0.1)	6.0 (6.2:3.7)	16.5	0.0	16.5
16/1	361	361	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/2	387	387	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/3	475	475	-	-	-	0.1	0.0	-	0.1	0.5	0.5	0.0	0.5
17/1	513	513	-	-	-	1.7	0.0	-	1.7	11.8	3.7	0.0	3.7
17/2	539	539	-	-	-	2.2	0.0	-	2.2	14.5	4.7	0.0	4.7
17/3	542	542	-	-	-	2.2	0.0	-	2.2	14.7	4.8	0.0	4.8
18/1	296	296	-	-	-	0.1	0.0	-	0.1	1.7	1.0	0.0	1.0
18/2	593	593	-	-	-	0.3	0.0	-	0.3	1.9	1.5	0.0	1.5
19/1	826	826	-	-	-	0.4	0.0	-	0.4	1.8	1.5	0.0	1.5
19/2	1186	1186	-	-	-	0.5	0.0	-	0.5	1.6	2.7	0.0	2.7
19/3	682	682	-	-	-	0.3	0.0	-	0.3	1.8	1.3	0.0	1.3
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	Stream: 2 PRC for Signalled Lanes (%): Stream: 3 PRC for Signalled Lanes (%): Stream: 3 PRC for Signalled Lanes (%): Total Delay for Signalled Lanes (pcuHr): Stream: 3 PRC for Signalled Lanes (%): Total Delay for Signalled Lanes (pcuHr											

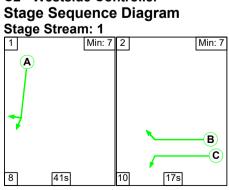
Scenario 8: '2031 Updated NSTM sensitivity test - PM' (FG6: '2031 Updated NSTM sensitivity test - PM', Plan 1: 'Network Control Plan 1')

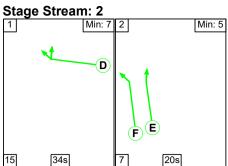
C1 - Eastside Controller

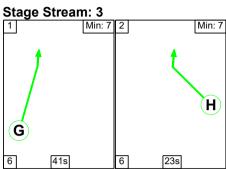
Stage Sequence Diagram

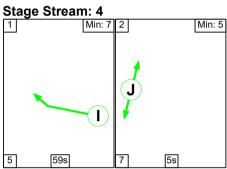
Stage Timings Stage Stream: 1


Stage	1	2
Duration	42	17
Change Point	4	55


Stage Stream: 2


Stage	1	2
Duration	24	37
Change Point	47	4


Stage	1	2
Duration	53	7
Change Point	58	45


Signal Timings Diagram 40 0 30 50 70 10 20 60 55 4 2 9:42 8:17 ABCDEFG ABCDEFG 47 4 6:37 9:24 Η Н J K L J K L M M 45 58 10:53 6:7 N O P N O P 70 10 40 0 20 30 50 60

Stage Timings Stage Stream: 1

Stage	1	2
Duration	41	17
Change Point	24	73

Stage Stream: 2

Stage	1	2
Duration	34	20
Change Point	10	59

Stage Stream: 3

Stage	1	2
Duration	41	23
Change Point	33	4

otago otroann i										
Stage	1	2								
Duration	59	5								
Change Point	19	7								

Signal Timings Diagram 0 10 20 30 40 50 60 70 73 2 24 10 : 17 8:41 $\mathsf{B}\overset{\mathsf{A}}{\mathsf{C}}$ A C 59 2 10 1 15:34 7:20 $\mathsf{E}\,\stackrel{\mathsf{D}}{\mathsf{F}}$ P F Phases 33 6:23 6:41 G <u>H</u> <u>H</u> G 19 7 2 7:5 5:59 <u>J</u> I J 10 20 30 40 60 0 50 70

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: M1 Junction 15 impact with additional mezzanine	-	-	N/A	-	-		-	-	-	-	-	-	88.5%
M1 Junction 15	-	-	N/A	-	-		-	-	-	-	-	-	88.5%
1/2+1/1	M1 Southbound Offslip Left	U	1:1	N/A	C1:D		1	18	-	823	2120:1980	530+495	81.1 : 79.4%
1/3+1/4	M1 Southbound Offslip Left Ahead	U	1:1	N/A	C1:D C1:C		1	18:20	-	951	2120:4000	530+629	82.1 : 82.1%
3/1	Ahead Right	U	1:2	N/A	C1:I		1	25	-	156	1900	650	24.0%
3/2	Right	U	1:2	N/A	C1:I		1	25	-	29	1900	650	4.5%
3/3	Right	U	1:2	N/A	C1:H		1	24	-	200	1900	625	32.0%
3/4	Right	U	1:2	N/A	C1:H		1	24	-	234	1900	625	37.4%
4/2+4/1	A45 Southbound Left Ahead	U	1:2	N/A	C1:K		1	37	-	1145	2120:1980	1025+990	55.9 : 57.8%
4/3	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	646	2120	1088	59.4%
4/4+4/5	A45 Southbound Ahead	U	1:2	N/A	C1:J		1	38	-	1644	2120:2120	1088+878	88.5 : 77.5%
6/1	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	849	2120	1172	72.5%
6/2	M1 Northbound Circulatory Ahead	U	2:1	N/A	C2:A		1	41	-	775	2120	1172	66.2%
6/3	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	472	2120	1172	40.3%
6/4	M1 Northbound Circulatory Right	U	2:1	N/A	C2:A		1	41	-	824	2120	1172	70.3%
8/1	Saxon Avenue Left Left2	U	1:3	N/A	C1:P		1	7	-	147	1904	200	73.3%
8/2	Saxon Avenue Left	U	1:3	N/A	C1:P		1	7	-	143	2105	222	64.5%
9/2+9/1	M1 Northbound Offslip Left Ahead	U	2:1	N/A	C2:B C2:C		1	19:17	-	461	2120:1980	558+145	65.6 : 65.6%

9/3+9/4	M1 Northbound Offslip Ahead	U	2:1	N/A	C2:B	1	19	-	857	2120:2120	558+558	66.1 : 87.5%
11/1	Ahead	U	2:2	N/A	C2:D	1	34	-	628	1900	875	71.8%
11/2	Ahead Right	U	2:2	N/A	C2:D	1	34	-	668	1900	875	76.3%
12/1	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1009	1995	1575	64.1%
12/2	Toucan Crossing Ahead	U	2:4	N/A	C2:I	1	59	-	1024	1995	1575	65.0%
13/2+13/1	A508 Northampton Rd Ahead	U	2:2	N/A	C2:F	1	28	-	761	1980:1980	616+617	61.7 : 61.7%
13/3	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	525	2120	642	81.8%
13/4+13/5	A508 Northampton Rd Ahead	U	2:2	N/A	C2:E	1	22	-	1127	2120:2120	642+642	87.4 : 88.2%
15/1	Ahead	U	1:1	N/A	C1:A	1	42	-	915	2000	1132	80.9%
15/2	Ahead	U	1:1	N/A	C1:A	1	42	-	930	2000	1132	82.2%
15/3+15/4	Ahead Right	U	1:1	N/A	C1:A C1:B	1	42	-	1054	2000:2000	1077+117	88.3 : 88.3%
16/1	Right	U	2:3	N/A	C2:H	1	23	-	366	2000	632	58.0%
16/2	Right	U	2:3	N/A	C2:H	1	23	-	369	2000	632	58.4%
16/3	Right	U	2:3	N/A	C2:H	1	23	-	488	2000	632	77.3%
17/1	Ahead	U	2:3	N/A	C2:G	1	41	-	549	2000	1105	49.7%
17/2	Ahead	U	2:3	N/A	C2:G	1	41	-	561	2000	1105	50.8%
17/3	Ahead	U	2:3	N/A	C2:G	1	41	-	566	2000	1105	51.2%
18/1	Ahead	U	1:3	N/A	C1:O	1	56	-	311	2000	1500	20.7%
18/2	Ahead	U	1:3	N/A	C1:O	1	56	-	602	2000	1500	40.1%
19/1	Ahead	U	1:3	N/A	C1:N	1	53	-	846	2000	1421	59.5%
19/2	Ahead	U	1:3	N/A	C1:N	1	53	-	1197	2120	1506	79.5%
19/3	Ahead	U	1:3	N/A	C1:N	1	53	-	681	2120	1506	45.2%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: M1 Junction 15 impact with additional mezzanine	-	-	0	0	0	82.5	19.7	0.0	102.1	-	-	-	-
M1 Junction 15	-	-	0	0	0	82.5	19.7	0.0	102.1	-	-	-	-
1/2+1/1	823	823	-	-	-	6.1	2.0	-	8.1 (4.2+3.9)	35.5 (35.6:35.4)	8.5	2.0	10.5
1/3+1/4	951	951	-	-	-	6.5	2.2	-	8.8 (4.3+4.5)	33.2 (35.4:31.3)	8.6	2.2	10.8
3/1	156	156	-	-	-	0.5	0.0	-	0.5	12.2	1.5	0.0	1.5
3/2	29	29	-	-	-	0.2	0.0	-	0.2	23.1	0.4	0.0	0.4
3/3	200	200	-	-	-	0.2	0.0	-	0.2	3.3	0.3	0.0	0.3
3/4	234	234	-	-	-	0.2	0.0	-	0.2	3.2	0.3	0.0	0.3
4/2+4/1	1145	1145	-	-	-	4.2	0.7	-	4.9 (2.4+2.5)	15.3 (15.1:15.4)	8.4	0.7	9.1
4/3	646	646	-	-	-	2.3	0.7	-	3.1	17.0	9.5	0.7	10.2
4/4+4/5	1644	1644	-	-	-	6.9	2.5	-	9.4 (5.9+3.6)	20.7 (22.0:18.8)	17.9	2.5	20.4
6/1	849	849	-	-	-	4.4	0.0	-	4.4	18.5	17.9	0.0	17.9
6/2	775	775	-	-	-	3.3	0.0	-	3.3	15.1	15.3	0.0	15.3
6/3	472	472	-	-	-	0.6	0.3	-	1.0	7.2	5.5	0.3	5.9
6/4	824	824	-	-	-	1.9	0.0	-	1.9	8.4	14.2	0.0	14.2
8/1	147	147	-	-	-	1.3	1.3	-	2.7	65.1	3.0	1.3	4.3
8/2	143	143	-	-	-	1.3	0.9	-	2.2	55.0	2.9	0.9	3.7
9/2+9/1	461	461	-	-	-	3.1	0.9	-	4.1 (3.3+0.8)	32.0 (32.3:30.6)	6.8	0.9	7.8
9/3+9/4	857	857	-	-	-	6.2	1.6	-	7.8 (3.3+4.6)	32.9 (31.9:33.7)	9.8	1.6	11.4
11/1	628	628	-	-	-	1.2	0.0	-	1.2	7.0	4.4	0.0	4.4
11/2	668	668	-	-	-	1.4	0.0	-	1.4	7.6	2.9	0.0	2.9
12/1	1009	1009	-	-	-	0.2	0.0	-	0.2	0.7	1.4	0.0	1.4
12/2	1024	1024	-	-	-	0.2	0.0	-	0.2	0.7	1.4	0.0	1.4

13/2+13/1	761	761	-	-	-	3.8	0.8	-	4.6 (2.3+2.3)	21.8 (21.8:21.8)	6.1	0.8	6.9
13/3	525	525	-	-	-	3.6	2.2	-	5.8	39.5	10.2	2.2	12.4
13/4+13/5	1127	1127	-	-	-	7.9	3.5	-	11.3 (5.6+5.7)	36.2 (36.2:36.3)	11.3	3.5	14.8
15/1	915	915	-	-	-	1.9	0.0	-	1.9	7.4	14.9	0.0	14.9
15/2	930	930	-	-	-	2.1	0.0	-	2.1	8.2	15.2	0.0	15.2
15/3+15/4	1054	1054	-	-	-	2.0	0.0	-	2.0 (1.9+0.1)	6.8 (7.0:4.9)	16.8	0.0	16.8
16/1	366	366	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/2	369	369	-	-	-	0.0	0.0	-	0.0	0.3	0.4	0.0	0.4
16/3	488	488	-	-	-	0.1	0.0	-	0.1	0.5	0.5	0.0	0.5
17/1	549	549	-	-	-	2.0	0.0	-	2.0	13.4	4.5	0.0	4.5
17/2	561	561	-	-	-	2.4	0.0	-	2.4	15.4	5.2	0.0	5.2
17/3	566	566	-	-	-	2.4	0.0	-	2.4	15.6	5.3	0.0	5.3
18/1	311	311	-	-	-	0.2	0.0	-	0.2	1.8	1.4	0.0	1.4
18/2	602	602	-	-	-	0.3	0.0	-	0.3	2.0	1.7	0.0	1.7
19/1	846	846	-	-	-	0.4	0.0	-	0.4	1.8	1.6	0.0	1.6
19/2	1197	1197	-	-	-	0.5	0.0	-	0.5	1.6	2.7	0.0	2.7
19/3	681	681	-	-	-	0.3	0.0	-	0.3	1.8	1.3	0.0	1.3
	C1 - Eastside Controller C1 - Eastside Controller C1 - Eastside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller C2 - Westside Controller	de Controller Stream: 2 PRC for Signalled Lanes (%): 1.7 Total Delay for Signalled Lanes (pcuHr): 18.46 Cycle Time (s): 76 de Controller Stream: 3 PRC for Signalled Lanes (%): 2.9 Total Delay for Signalled Lanes (pcuHr): 6.64 Cycle Time (s): 76 de Controller Stream: 1 PRC for Signalled Lanes (%): 2.9 Total Delay for Signalled Lanes (pcuHr): 22.43 Cycle Time (s): 76 de Controller Stream: 2 PRC for Signalled Lanes (%): 2.9 Total Delay for Signalled Lanes (pcuHr): 24.33 Cycle Time (s): 76 de Controller Stream: 3 PRC for Signalled Lanes (%): 16.5 Total Delay for Signalled Lanes (pcuHr): 7.03 Cycle Time (s): 76 de Controller Stream: 3 PRC for Signalled Lanes (%): 16.5 Total Delay for Signalled Lanes (pcuHr): 7.03 Cycle Time (s): 76											